• 제목/요약/키워드: horizontal stiffness

검색결과 385건 처리시간 0.028초

미소변형율 강성을 고려한 지반굴착 해석 (The Analysis of Excavation Behavior Considering Small Strain Stiffness)

  • 김영민
    • 한국지반신소재학회논문집
    • /
    • 제9권2호
    • /
    • pp.21-31
    • /
    • 2010
  • 본 논문에서는 2단 앵커로 지지된 토류벽 굴착에 대한 유한요소해석으로 지표면침하, 토류벽의 횡방향변위, 모멘트분포 예측에 대한 연구를 수행하였다. 지반굴착에 대한 수치해석에 있어서 적절한 구성방정식을 고려하는 것은 매우 중요하다. 본 연구에서는 미소변형율 강성을 고려한 지반 굴착해석이 지표면 침하에 대하여 더 합리적인 예측을 보여 주었다. 또한 미소변형율 강성변수에 대한 굴착해석에 미치는 영향에 대해서도 매개변수 분석을 수행하였다.

  • PDF

면진장치 들림 효과를 고려한 면진된 골조의 구조 거동 평가 (Evaluation of Structural Response of Base Isolated Frame Considering Uplift Effect of Isolators)

  • 김대곤
    • 한국공간구조학회논문집
    • /
    • 제10권2호
    • /
    • pp.69-76
    • /
    • 2010
  • 적층고무 면진장치의 전단강성 뿐만 아니라 인장강성 및 압축강성을 실험적으로 구한 후 비선형 해석 프로그램을 이용하여 면진장치를 모델링 하였다. 수평력을 받는 면진된 골조의 면진장치에 전도에 의한 인장응력이 발생되게 하기 위하여 큰 초기변위를 부여한 자유진동 실험을 해석적으로 수행하였다. 적층고무 면진장치는 인장에 약하기 때문에 면진장치에서의 들림 현상을 해석적으로 구하기 위하여 면진장치의 수직방향 강성들이 해석 모델에 적절히 반영되어야 한다.

  • PDF

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

진동대 시험을 통한 액상화되는 지반의 수평지반반력계수에 대한 연구 (Modulus of Horizontal Subgrade Reaction in Liquefying Sand by Shaking Table Test)

  • 박종관;한성길;김상규;이용도
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.255-262
    • /
    • 2000
  • Shaking table tests were peformed to evaluate the subgrade reaction of ground according to the build-up of pore water pressure. Model pile was installed in the sand ground. The acceleration of the model ground, the pore water pressure build-up and displacement of pile were recorded by measuring devices. Subgrade reaction approach based on Winker soil model was applied to obtain the modulus of the horizontal subgrade reaction. The results of analysis show that the reduction factor of the subgrade reaction due to pore pressure increase is about 1 and the horizontal subgrade reaction of liquefied ground is not influenced by the stiffness of pile, a ground acceleration and the intial ground density.

  • PDF

스크래치 가공기술 개발에 따른 잉여 진동 성분 분석에 관한 연구 (A Study on the Redundant Vibration Analysis for the Development of Scratch Processing Technology)

  • 전찬대;차진훈;윤신일;한상보
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1660-1663
    • /
    • 2005
  • Unwanted vibrations are inevitably induced in other directions when pure unidirectional vibration motion is desired for the vertical scratching mechanism. Pure vertical vibration motion of the scratching machine can be obtained by driving identical two motors with symmetrically positioned eccentric unbalance masses. The desired optimal condition for driving pure vertical vibration for the scratching machine is assumed to be the resonance condition in that direction. Imposing the flexibility of the scratching machine in the horizontal direction, we can find out the amount of horizontal vibration component while maintaining the resonance in vertical direction. The desired stiffness in horizontal direction which produces the minimum vibration in horizontal direction are defined which can be used as a guide line to design the supporting structure of the scratching machine.

  • PDF

Accelerating CFD-DEM simulation of dilute pneumatic conveying with bends

  • Du, Jun;Hu, Guoming;Fang, Ziqiang;Gui, Wenjie
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.84-93
    • /
    • 2015
  • The computational cost is expensive for CFD-DEM simulation, a larger time step and a simplified CFD-DEM model can be used to accelerate the simulation. The relationship between stiffness and overlap in non-linear Hertzian model is examined, and a reasonable time step is determined by a new single particle test. The simplified model is used to simulate dilute pneumatic conveying with different types of bends, and its applicability is verified by compared with the traditional model. They are good agreement in horizontal-vertical case and vertical-horizontal case, and show a significant differences in horizontal-horizontal case. But the key features of particle rope formed in different types of bends can be obtained by both models.

동적 하중을 받는 말뚝기호의 지반반력에 관한 연구 (A Study on Soil Reaction of Pile Fonndation Subjected to Dynamic Loading)

  • 김영수;이송;백영식
    • 한국지반공학회지:지반
    • /
    • 제6권4호
    • /
    • pp.43-52
    • /
    • 1990
  • 수평방향의 조화진동을 받는 말뚝주변의 지반특성에 관한 각종 계수들의 효과를 연구하였다. 그리고 비선형 해석을 위하여 말뚝주변의 흙을 성질이 같은 여러개의 동심고리 모양으로 나누어 지반반력 또는 흙의 강성을 계산하였으며 다음과 같은 결론을 얻었다. 1) 강성의 실수와 허수부분은 무차원 주파수가 증가함에 따라 전단 계수비, 포아슨비, 그리고 외부영역까지의 거리의 비에 대하여 큰 변화를 나타냈고 그 차이는 강성의 허수부분에 더 현저하게 나타났다. 2) 흙의 강성의 외부영역까지의 거리가 증가할수록 현저하게 감소하였는데 강성의 실수부분은 주파수가 작을수록 크게 나타났다. 반면에 허수부분은 작게 나타났다.

  • PDF

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

캐비닛내부응답스펙트럼을 위한 전기캐비닛 전도강성 (Rocking Stiffness of Electrical Cabinet for In-Cabinet Response Spectrum)

  • 정연하;홍기증;조성국
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.95-102
    • /
    • 2020
  • Electrical instruments and devices contained in cabinets for controlling nuclear power plants require seismic qualification; likewise, in-cabinet response spectrum (ICRS) is necessary. Gupta et al. (1999) suggested the Ritz method, where rocking, frame bending, and plate bending behaviors of cabinets are considered, as a method for determining ICRS. This research proposes a method to determine the rocking stiffness of cabinets, which represents its rocking behavior. The cabinet is fixed on mounting frames and is connected to the base concrete by anchors. When horizontal excitation is applied to the cabinet, the mounting frames at anchors are locally deformed, the mounting frames are bent, and then rocking in the cabinet becomes evident. A method to determine equivalent vertical spring stiffness representing the local deformation of the mounting frames at anchors is then proposed. Subsequently, the rocking stiffness of this mounting frame is calculated upon assumption of the mounting frame as an indeterminate beam.