• Title/Summary/Keyword: horizontal shear reinforcement

Search Result 109, Processing Time 0.026 seconds

Experimental Study on Development for Separation and Reinforcement Geotextiles with Horizontal Wicking Drain Property (수평방향의 위킹 배수 특성을 지닌 분리·보강용 지오텍스타일 개발을 위한 실험적 연구)

  • Kim, Hong-Kwan;Ahn, Min-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • According to the recent civil engineering construction work site which is a complex process, development of multi-functional geotextiles is required. In this study, the characteristics of five different modified cross-section fiber yarns for the selection of wicking yarns were analyzed and yarns that can achieve target properties were selected. Experimental prototype geotextiles suitable for horizontal wicking drain property and reinforcement was developed and its tensile strength, 2% secant modulus, vertical water permeability, AOS, friction characteristics by the direct shear method, and vertical/horizontal wicking test were analyzed. These tests are conducted to verify the performance of the geotextiles with horizontal wick drain property, separation and reinforcement developed in this study. As a results of the indoor soil box test, it was confirmed that the geotextiles using the wicking yarn sufficiently exhibited the function of discharging excess pore water in the horizontal direction.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

Stability Analysis of Upper Structures by Soil Grouting (지반 그라우팅에 의한 상부구조물의 안전성 분석)

  • Hwang, Chulsung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.58-65
    • /
    • 2013
  • Transportation and further expansion of social infrastructure was needed along the development of urbanization and population concentration. To use the underground space due to the lack of availability of land, it is inevitable to intersect between present structure and tunnel during construction. Soil grouting is one of the ground improvement methods to reinforce weak soil around the underground structures by injection of grouting liquid. Some of central columns of an upper structure are damaged during injection of grouting liquid by injection pressure. To investigate and improve the stability of the tunnel, three dimensional analysis are performed with full construction stages which includes the construction of present underpass, damaging columns of the underpass, reinforcing the columns by H-pile and shear walls, and excavation and construct tunnel. The arrangement of grouting holes such as curtain and horizontal type affects largely to the stability of upper structure and horizontal arrangement diminish the shear forces which is the cause of damage of central columns. The liquid injection type of reinforcement for tunnel is not recommended while the presence of upper structure with columns. Wall type reinforcing is utilize for permant support of upper structures which is affected by grouting injection pressure. H-pile is utilize for temporary support, but not for permanent since the sharing of shear forces is not much to shear wall during tunnel construction.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.

An Experimental Study on Reinforcing Effectiveness of H-Shaped Steel Beams with Rectangular Web Openings (다공 H 형강보의 보강효과에 관한 실험적 연구)

  • Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.213-222
    • /
    • 1999
  • On condition that opening located at high shear strength position in H-shaped steel beams with web opening, beams are structurally to be frailed so necessity and efficiency of vertical reinforcement to add horizontal reinforcement already published ahead study. Up to the present study of web opening beams, limited one opening which located in comparatively small shear strength position. But frequently opening area is enlargement by necessity, so width of opening is larger by limit of depth or increasing number of opening. This study carry out experiment to make efficient reinforcing method about strength and deformation of steel beams with web openings. Parameters of this study are openings location, ratio of opening width within opening height and various reinforcing types.

  • PDF

Behaviour of the Reinforced Concrete Columns with Shear Reinforcement (전단보강량에 따른 철근콘크리트 기둥의 거동)

  • Nam, Sang-Uk;Song, Han-Beom;Tae, Kyung-Hoon;Yi, Waon-Ho;Oh, Sang-Hoon;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • Under earthquake loads, the columns on the lower stories carry large axial forces and horizontal forces as the earthquake loads are acting horizontally and vertically on the building. To distribute the energy entered into the building under earthquakes according to the plastic deformation of the members, it is safer and more economic to persuade plastic hinge to occur in the beams rather than on the columns. However, it is unavoidable to have plastic hinge occurring on the columns when it is applied on both of the main axes of the building, which results in high shear force on the column end, and reinforced concrete column may result in sudden brittle failure due to bending moment and shear force. To increase restriction of the reinforced concrete column on the horizontal forces, this study uses repetitive loading experiments with different amount of shear reinforcement, and analyzes and compares the structural safety and behaviour of the reinforced test materials.

  • PDF

Deformation analysis of a geocell mattress using a decoupled iterative method

  • Zhang, Ling;Zhao, Minghua;Zhao, Heng
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.775-790
    • /
    • 2013
  • Deformation analysis is a major concern in many geotechnical applications. In this paper, the deformation behavior of a geocell mattress subjected to symmetric loads was studied. The mattress was idealized as an elastic foundation beam. The horizontal beam-soil interfacial shear resistances at the beam top and bottom sides were taken into account by assuming the resistances to be linear with the relative horizontal displacements. A decoupled iterative method was employed to solve the differential displacement equations derived from the force analysis of a beam element and to obtain the solutions for the deformations and internal forces of the geocell reinforcement. The validity of the present solutions was verified by the existing finite element method and power-series solutions.

A Study on the Shear performance of Joints for slab extension (슬래브확장을 위한 접합부의 전단성능에 관한 연구)

  • Ryu, Han-Gook;Park, Tae-Won;Chung, Lan;Lee, Sang-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.109-110
    • /
    • 2009
  • This study is to evaluate the shear performance of joint between existing and new slab in apartment remodeling construction for enlarging existing slab. The horizontal joint parameters are consisted by steel pipe cotter, shear reinforcement, H-steel, stud bolt, and round shear key by concrete. And joint specimens will be tested to evaluate the shear performance of these parameters. If the joint detail have sufficient strength, it will be proposed the basic form on the design of joint parts.

  • PDF

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Evaluation of Horizontal Shear Strength for Concrete Composite Members (콘크리트 합성부재의 수평 전단강도 평가)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.407-417
    • /
    • 2016
  • In this study, concrete composite beams were tested under two-point loading to evaluate horizontal shear strength. The test variables were a type of composite members (PC+RC, PSC+RC, SFRC+RC), area ratio of high-strength (60MPa) to low-strength concrete (24 MPa), and transverse reinforcement ratio. The test results showed that the contribution of transverse reinforcements and interface conditions had influence on horizontal shear strength. Existing and previous test results were classified according to test methods and the interface conditions and were compared with the predictions of current design codes. On the basis of test results, an improved design method was proposed.