• Title/Summary/Keyword: horizontal parallelism

Search Result 15, Processing Time 0.024 seconds

Parallel Method for HEVC Deblocking Filter based on Coding Unit Depth Information (코딩 유닛 깊이 정보를 이용한 HEVC 디블록킹 필터의 병렬화 기법)

  • Jo, Hyun-Ho;Ryu, Eun-Kyung;Nam, Jung-Hak;Sim, Dong-Gyu;Kim, Doo-Hyun;Song, Joon-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.742-755
    • /
    • 2012
  • In this paper, we propose a parallel deblocking algorithm to resolve workload imbalance when the deblocking filter of high efficiency video coding (HEVC) decoder is parallelized. In HEVC, the deblocking filter which is one of the in-loop filters conducts two-step filtering on vertical edges first and horizontal edges later. The deblocking filtering can be conducted with high-speed through data-level parallelism because there is no dependency between adjacent edges for deblocking filtering processes. However, workloads would be imbalanced among regions even though the same amount of data for each region is allocated, which causes performance loss of decoder parallelization. In this paper, we solve the problem for workload imbalance by predicting the complexity of deblocking filtering with coding unit (CU) depth information at a coding tree block (CTB) and by allocating the same amount of workload to each core. Experimental results show that the proposed method achieves average time saving (ATS) by 64.3%, compared to single core-based deblocking filtering and also achieves ATS by 6.7% on average and 13.5% on maximum, compared to the conventional uniform data-level parallelism.

Efficient programmable power-of-two scaler for the three-moduli set {2n+p, 2n - 1, 2n+1 - 1}

  • Taheri, MohammadReza;Navi, Keivan;Molahosseini, Amir Sabbagh
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.596-607
    • /
    • 2020
  • Scaling is an important operation because of the iterative nature of arithmetic processes in digital signal processors (DSPs). In residue number system (RNS)-based DSPs, scaling represents a performance bottleneck based on the complexity of intermodulo operations. To design an efficient RNS scaler for special moduli sets, a body of literature has been dedicated to the study of the well-known moduli sets {2n - 1, 2n, 2n + 1} and {2n, 2n - 1, 2n+1 - 1}, and their extension in vertical or horizontal forms. In this study, we propose an efficient programmable RNS scaler for the arithmetic-friendly moduli set {2n+p, 2n - 1, 2n+1 - 1}. The proposed algorithm yields high speed and energy-efficient realization of an RNS programmable scaler based on the effective exploitation of the mixed-radix representation, parallelism, and a hardware sharing technique. Experimental results obtained for a 130 nm CMOS ASIC technology demonstrate the superiority of the proposed programmable scaler compared to the only available and highly effective hybrid programmable scaler for an identical moduli set. The proposed scaler provides 43.28% less power consumption, 33.27% faster execution, and 28.55% more area saving on average compared to the hybrid programmable scaler.

Esthetic prosthesis for a patient with the maxillary diastema: a case report (상악의 치간이개를 가진 환자에서의 심미보철 수복 증례)

  • Park, Jae-Ho;Kim, Hyeran;Yun, Kwi-Dug;Shin, Jin-Ho;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.314-320
    • /
    • 2017
  • In the treatment of esthetically important areas such as maxillary anterior teeth, they should be corresponded with surrounding tissues, and shape of the smile line, soft tissue, and hard tissue, also the anatomical shape and proportion of the teeth should be considered as well. Esthetic analysis includes facial analysis which evaluates the proper parallelism between the occlusal plane and the horizontal reference line, dentolabial analysis which assesses the position of the incisal edge and the coherence between the occlusal plane and the commissural line, tooth analysis which evaluates not only esthetics but also morphology and appearance for proper function, and gingival analysis which forms ideal outline of gingival margins. A maxillary anterior diastema can be esthetically restored through the systematic diagnostic approach and treatment planning, and orthodontic, prosthetic, and conservative treatment can be applied for the treatment.

Energy-Efficient and Parameterized Designs for Fast Fourier Transform on FPGAs (FPGA에서 FFT(Fast Fourier Transform)를 구현하기 위한 에너지 효율적이고 변수화 된 설계)

  • Jang Ju-Wook;Han Woo-Jin;Choi Seon-Il;Govindu Gokul;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.171-176
    • /
    • 2006
  • In this paper, we develop energy efficient designs for the Fast Fourier Transform (FFT) on FPGAs. Architectures for FFT on FPGAs are designed by investigating and applying techniques for minimizing the energy dissipation. Architectural parmeters such as degrees of vertical and horizontal parallelism are identified and a design choices. We determine design trade-offs using high-level performance estimation to obtain energy-efficient designs. We implemented a set storage types as parameters, on Xilinx Vertex-II FPGA to verify the estimates. Our designs dissipate 57% to 78% less energy than the optimized designs from the Xilinx library. In terms of a comprehensive metric such as EAT (Energy-Area-Time), out designs offer performance improvements of 3-13x over the Xilinx designs.

Positional symmetry of porion and external auditory meatus in facial asymmetry

  • Choi, Ji Wook;Jung, Seo Yeon;Kim, Hak-Jin;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.33.1-33.9
    • /
    • 2015
  • Background: The porion (Po) is used to construct the Frankfort horizontal (FH) plane for cephalometrics, and the external auditory meatus (EAM) is to transfer and mount the dental model with facebow. The classical assumption is that EAM represents Po by the parallel positioning. However, we are sometimes questioning about the possible positional disparity between Po and EAM, when the occlusal cant or facial midline is different from our clinical understandings. The purpose of this study was to evaluate the positional parallelism of Po and EAM in facial asymmetries, and also to investigate their relationship with the maxillary occlusal cant. Methods: The 67 subjects were classified into three groups. Group I had normal subjects with facial symmetry ($1.05{\pm}0.52mm$ of average chin deviation) with minimal occlusal cant (<1.5 mm). Asymmetry group II-A had no maxillary occlusal cant (average $0.60{\pm}0.36$), while asymmetry group II-B had occlusal cant (average $3.72{\pm}1.47$). The distances of bilateral Po, EAM, and mesiobuccal cusp tips of the maxillary first molars (Mx) from the horizontal orbital plane (Orb) and the coronal plane were measured on the three-dimensional computed tomographic images. Their right and left side distance discrepancies were calculated and statistically compared. Results: EAM was located 10.3 mm below and 2.3 mm anterior to Po in group I. The vertical distances from Po to EAM of both sides were significantly different in group II-B (p=0.001), while other groups were not. Interside discrepancy of the vertical distances from EAM to Mx in group II-B also showed the significant differences, as compared with those from Po to Mx and from Orb to Mx. Conclusions: The subjects with facial asymmetry and prominent maxillary occlusal cant tend to have the symmetric position of Po but asymmetric EAM. Some caution or other measures will be helpful for them to be used during the clinical procedures.