• Title/Summary/Keyword: horizontal gene transfer (HGT)

Search Result 9, Processing Time 0.023 seconds

Source Environment Feature Related Phylogenetic Distribution Pattern of Anoxygenic Photosynthetic Bacteria as Revealed by pufM Analysis

  • Zeng, Yonghui;Jiao, Nianzhi
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • Anoxygenic photosynthesis, performed primarily by anoxygenic photosynthetic bacteria (APB), has been supposed to arise on Earth more than 3 billion years ago. The long established APB are distributed in almost every corner where light can reach. However, the relationship between APB phylogeny and source environments has been largely unexplored. Here we retrieved the pufM sequences and related source information of 89 pufM containing species from the public database. Phylogenetic analysis revealed that horizontal gene transfer (HGT) most likely occurred within 11 out of a total 21 pufM subgroups, not only among species within the same class but also among species of different phyla or subphyla. A clear source environment feature related phylogenetic distribution pattern was observed, with all species from oxic habitats and those from anoxic habitats clustering into independent subgroups, respectively. HGT among ancient APB and subsequent long term evolution and adaptation to separated niches may have contributed to the coupling of environment and pufM phylogeny.

Transcriptome analysis of the short-term photosynthetic sea slug Placida dendritica

  • Han, Ji Hee;Klochkova, Tatyana A.;Han, Jong Won;Shim, Junbo;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.303-312
    • /
    • 2015
  • The intimate physical interaction between food algae and sacoglossan sea slug is a pertinent system to test the theory that “you are what you eat.” Some sacoglossan mollusks ingest and maintain chloroplasts that they acquire from the algae for photosynthesis. The basis of photosynthesis maintenance in these sea slugs was often explained by extensive horizontal gene transfer (HGT) from the food algae to the animal nucleus. Two large-scale expressed sequence tags databases of the green alga Bryopsis plumosa and sea slug Placida dendritica were established using 454 pyrosequencing. Comparison of the transcriptomes showed no possible case of putative HGT, except an actin gene from P. dendritica, designated as PdActin04, which showed 98.9% identity in DNA sequence with the complementary gene from B. plumosa, BpActin03. Highly conserved homologues of this actin gene were found from related green algae, but not in other photosynthetic sea slugs. Phylogenetic analysis showed incongruence between the gene and known organismal phylogenies of the two species. Our data suggest that HGT is not the primary reason underlying the maintenance of short-term kleptoplastidy in Placida dendritica.

CysQ of $Cryptosporidium$ $parvum$, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer

  • Lee, Ji-Young;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Horizontal gene transfer (HGT) is the movement of genetic material between kingdoms and is considered to play a positive role in adaptation. $Cryptosporidium$ $parvum$ is a parasitic protozoan that causes an infectious disease. Its genome sequencing reported 14 bacteria-like proteins in the nuclear genome. Among them, cgd2_1810, which has been annotated as CysQ, a sulfite synthesis pathway protein, is listed as one of the candidates of genes horizontally transferred from bacterial origin. In this report, we examined this issue using phylogenetic analysis. Our BLAST search showed that $C.$ $parvum$ CysQ protein had the highest similarity with that of proteobacteria. Analysis with NCBI's Conserved Domain Tree showed phylogenetic incongruence, in that $C.$ $parvum$ CysQ protein was located within a branch of proteobacteria in the cd01638 domain, a bacterial member of the inositol monophosphatase family. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the sulfate assimilation pathway, where CysQ plays an important role, is well conserved in most eukaryotes as well as prokaryotes. However, the Apicomplexa, including $C.$ $parvum$, largely lack orthologous genes of the pathway, suggesting its loss in those protozoan lineages. Therefore, we conclude that $C.$ $parvum$ regained cysQ from proteobacteria by HGT, although its functional role is elusive.

Horizontal Gene Transfer among Bacteria by Transformation in Soil and Aquatic Environments (토양 및 수계환경에서 Transformation에 의한 세균들간의 수평적 유전물질 전이)

  • 이건형
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2000
  • Laboratory studies have revealed that naturally transformable bacteria develop competence under in situ conditions. Thus, the occurrence of competent bacteria in the environment can be considered as a certainty The persistence of free DNA in natural habitats is influenced by nucleolytic degradation and protection from degradation by adsorption to minerals. Although DNA seeded into natural environment was hydrolysed at substantial rates, but was still detectable at low levels after even several weeks. Compared to the number of laboratory based studies, only a few data have been published dealing with transformation of bacteria in the field. Recently, the potential transfer of recombinant DNA (rDNA) from deliberately or accidentally released bacteria to indigenous microbes has raised biosafety issues, since the persistence of rDNA becomes independent of the survival of its original host and leads to unpredictable, long-term ecological effects. The aim of the present review is to summarise recent literature on horizontal gene transfer (HGT) by transformation among bacteria in both soil and aquatic habitat and special emphasis is placed on recent reports which have addressed HGT among bacteria in the field. [Transformation, Horizontal gene transfer (HGT), recombinant DNA (rDNA), Genetically modified microorganisms (GMMs), Biosafety]

  • PDF

Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure

  • Lee, Yong-Eok;Yang, Sang-Hwan;Bae, Tae-Woong;Kang, Hong-Gyu;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P<0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

Resistome Study in Aquatic Environments

  • Hanseob Shin;Yongjin Kim;Seunggyun Han;Hor-Gil Hur
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.277-287
    • /
    • 2023
  • Since the first discovery of antibiotics, introduction of new antibiotics has been coupled with the occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Rapid dissemination of ARB and ARGs in the aquatic environments has become a global concern. ARB and ARGs have been already disseminated in the aquatic environments via various routes. Main hosts of most of ARGs were found to belong to Gammaproteobacteria class, including clinically important potential pathogens. Transmission of ARGs also occurs by horizontal gene transfer (HGT) mechanisms between bacterial strains in the aquatic environments, resulting in ubiquity of ARGs. Thus, a few of ARGs and MGEs (e.g., strA, sul1, int1) have been suggested as indicators for global comparability of contamination level in the aquatic environments. With ARB and ARGs contamination, the occurrence of critical pathogens has been globally issued due to their widespread in the aquatic environments. Thus, active surveillance systems have been launched worldwide. In this review, we described advancement of methodologies for ARGs detection, and occurrence of ARB and ARGs and their dissemination in the aquatic environments. Even though numerous studies have been conducted for ARB and ARGs, there is still no clear strategy to tackle antibiotic resistance (AR) in the aquatic environments. At least, for consistent surveillance, a strict framework should be established for further research in the aquatic environments.

Environmental risk assessment of genetically modified Herbicide-Tolerant zoysiagrass (Event: Jeju Green21) (제초제저항성 들잔디(Zoysia japonica Steud.) 이벤트 Jeju Green21의 환경위해성평가)

  • Bae, Tae-Woong;Kang, Hong-Gyu;Song, In-Ja;Sun, Hyeon-Jin;Ko, Suk-Min;Song, Pill-Soon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.105-116
    • /
    • 2011
  • Transgenic zoysiagrass (Zoysia japonica Steud.) expressing the bar gene inserted in the plant genome has been generated previously through Agrobacterium tumefaciens-mediated transformation. The GM zoysiagrass (event: JG21) permits efficient management of weed control of widely cultivated zoysiagrass fields, reducing the frequency and cost of using various herbicides for weed control. Now we have carried out the environmental risk assessment of JG21 prior to applying to the governmental regulatory agency for the commercial release of the GM turf grass outside of test plots. The morphological phenotypes, molecular analysis, weediness and gene flow from each test plot of JG21 and wild-type zoysiagrasses have been evaluated by selectively analyzing environmental effects. There were no marked differences in morphological phenotypes between JG21 and wild-type grasses. The JG21 retained its stable integration in the host plant in T1 generation, exhibiting a 3:1 segregation ratio according to the Mendelian genetics. We confirmed the copy number (1) of JG21 by using Southern blot analysis, as the transgenic plants were tolerant to ammonium glufosinate throughout the culture period. From cross-fertilization and gene flow studies, we found a 9% cross-pollination rate at the center of JG21 field and 0% at distances over 3 m from the field. The JG21 and wild-type zoysiagrass plants are not considered "weed" because zoysiagrasses generally are not dominant and do not spread into weedy areas easily. We assessed the horizontal gene transfer (HGT) of the transgene DNA to soil microorganisms from JG21 and wild-type plants. The bar gene was not detected from the total genomic DNA extracted from each rhizosphere soil of GM and non-GM Zoysia grass fields. Through the monitoring of JG21 transgene's unintentional release into the environment, we found no evidence for either pollen mediated gene flow of zoysiagrass or seed dispersal from the test field within a 3 km radius of the natural habitat.

Seasonal and Spatial Diversity of Picocyanobacteria Community in the Great Mazurian Lakes Derived from DGGE Analyses of 16S rDNA and cpcBA-IGS Markers

  • Jasser, Iwona;Krolicka, Adriana;Jakubiec, Katarzyna;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.739-749
    • /
    • 2013
  • The seasonal and spatial diversity of picocyanobacteria (Pcy) in lakes of the Great Mazurian Lakes (GLM) system was examined by DGGE analysis of molecular markers derived from the 16S-23S internal transcribed spacer (ITS) of the ribosomal operon and the phycocyanin operon (cpcBA-IGS). The study of nine lakes, ranging from mesotrophy to hypereutrophy, demonstrated seasonal variance of Pcy. The richness and Shannon diversity index calculated on the basis of both markers were higher in spring and lower in early and late summer. No statistically significant relationships were found between the markers and trophic status of the studied lakes or Pcy abundance. There were, however, statistically significant relationships between the diversity indices and sampling time. The analysis pointed to a different distribution of the two markers. The ITS marker exhibited more unique sequences in time and space, whereas a greater role for common and ubiquitous sequences was indicated by the cpcBA-IGS data. Examination of the Pcy community structure demonstrated that communities were grouped in highly similar clusters according to sampling season/time rather than to the trophic status of the lake. Our results suggest that time is more important than trophic status in shaping the diversity and structure of Pcy communities. The seasonal changes in picocyanobacteria and differences in diversity and community structures are discussed in the context of well-established ecological hypotheses: the PEG model, intermediate disturbance hypothesis (IDH), and horizontal gene transfer (HGT).

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF