• Title/Summary/Keyword: horizontal force

Search Result 849, Processing Time 0.032 seconds

Effect of Temperature on Growth of Tin Oxide Nanostructures (산화주석 나노구조물의 성장에서 기판 온도의 효과)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.497-502
    • /
    • 2019
  • Metal oxide nanostructures are promising materials for advanced applications, such as high sensitive gas sensors, and high capacitance lithium-ion batteries. In this study, tin oxide (SnO) nanostructures were grown on a Si wafer substrate using a two-zone horizontal furnace system for a various substrate temperatures. The raw material of tin dioxide ($SnO_2$) powder was vaporized at $1070^{\circ}C$ in an alumina crucible. High purity Ar gas, as a carrier gas, was flown with a flow rate of 1000 standard cubic centimeters per minute. The SnO nanostructures were grown on a Si substrate at $350{\sim}450^{\circ}C$ under 545 Pa for 30 minutes. The surface morphology of the as-grown SnO nanostructures on Si substrate was characterized by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Raman spectroscopy was used to confirm the phase of the as-grown SnO nanostructures. As the results, the as-grown tin oxide nanostructures exhibited a pure tin monoxide phase. As the substrate temperature was increased from $350^{\circ}C$ to $424^{\circ}C$, the thickness and grain size of the SnO nanostructures were increased. The SnO nanostructures grown at $450^{\circ}C$ exhibited complex polycrystalline structures, whereas the SnO nanostructures grown at $350^{\circ}C$ to $424^{\circ}C$ exhibited simple grain structures parallel to the substrate.

Study on the effect of cable on the lateral behavior of S-shaped Pedestrian-CSB (S형 보도사장교의 케이블이 횡방향 거동에 미치는 영향 연구)

  • Ji, Seon-Geun;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.577-584
    • /
    • 2019
  • Recently, CSB(Cable-Stayed Bridge) have been attempted to be atypical forms for landscape elements in Korea. CSB with new geometry need to analyze their characteristics clearly to ensure structural safety. This study's bridge is the S-shaped curved pedestrian CSB that has a girder with S-shape plane curve and reverse triangular truss cross section, inclined independent pylon, modified Fan type main cable and vertical backstay cable. Curved CSB can have excessive lateral displacement and moment when the tension is adjusted, focusing only on longitudinal behavior, such as a straight CSB. In order to analyze the effect of the cable on the lateral behavior of bridges, the cable is divided into two groups according to the lateral displacement direction of the pylon due to tension. The influence of the combination ratio of GR1 and GR2 on the girder, bearing, pylon, and vertical anchor cable was analyzed. When the tension applied to the bridge is 1.0GR1 plus 1.0GR2, In the combination of 1.2GR1 plus 0.8GR2, the stress on the left and right upper member of the truss girder and the deviation of the both were minimized. In addition, the horizontal force of the bearing, the lateral displacement and moment of the pylon, and the tension of the vertical backstay cable also decreased. This study is expected to be used as basic data for determination of tension of CSB with similar geometry.

A Study on Seismic Performance Evaluation of Road Tunnel according to Seismic Analysis Conditions (내진해석 조건에 따른 도로터널 내진성능평가에 관한 연구)

  • Choi, Byoung-Il;Kim, Chan-Hee;Noh, Eun-Cheol;Ha, Myung-Ho;Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.127-134
    • /
    • 2021
  • When constructing a tunnel on a stable ground, stress is changed in the ground during excavation stage and installation of ground support materials. In the standards for safety evaluation of structures in use, it is suggested to perform numerical analysis reflecting the excavation stage. But method of seismic performance evaluation was not presented. Therefore, in this study, numerical analysis was performed with different analysis methods, and the results were compared and analyzed. As a result of the numerical analysis, seismic wave applied in the horizontal direction were no difference depending on the analysis methods. However, there was a big difference in the result according to the evaluation methods of tunnel member forces. When reviewing with the strength design method, the structure performance could be not satisfied depending on the existence or nonexistence of reinforcing bars. Based on these research results, it is suggested that the interpretation method should be clearly presented and reflected in the relevant standards.

Experimental Assessment of Reduction in the Negative Skin Friction Using a Pile with a Member Responding to Ground Deformation (지반 변형 대응 부재를 적용한 말뚝의 부마찰력 저감 성능의 실험적 검증)

  • Shin, Sehee;Lee, Haklin;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.5-16
    • /
    • 2022
  • Ground in extremely cold and hot regions can sink by various environmental factors. Ground settlement can generate the negative skin friction to pile shaft, increase the base load of pile, and cut the stability of the pile. This study proposed a member responding ground deformation which can be inserted inside the pile. The member slightly compresses according to the ground settlement to reduce the negative skin friction. As the member materials, this study considered spring and spring-dashpot. To assess the ability of the member, the present research performed model tests for piles with or without the member within settled ground. In the model tests, the base load, total shaft resistance, and horizontal earth pressure were monitored and analyzed. Experimental results show that the pile with spring member can reduce the negative skin friction under small settlement conditions whereas it acts similar to the pile without the member under large settlement conditions as the spring was no longer compressed. However, the pile with the spring-dashpot member can reduce the negative skin friction continuously upon the ground settlement as the dashpot delays the load transfer to the spring and locates friction force on the unloading path.

Analytical Study of Geometric Nonlinear Behavior of Cable-stayed Bridges (사장교의 기하학적 비선형 거동의 해석적 연구)

  • Kim, Seungjun;Lee, Kee Sei;Kim, Kyung Sik;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.1-13
    • /
    • 2010
  • This paper presents an investigation on the geometric nonlinear behavior of cable-stayed bridges using geometric nonlinear finite element analysis method. The girder and mast in cable-stayed bridges show the combined axial load and bending moment interaction due to horizontal and vertical forces of inclined cable. So these members are considered as beam-column member. In this study, the nonlinear finite element analysis method is used to resolve the geometric nonlinear behavior of cable-stayed bridges in consideration of beam-column effect, large displacement effect (known as P-${\delta}$ effect) and cable sag effect. To analyze a cable-stayed bridge model, nonlinear 6-degree of freedom frame element and nonlinear 3-degree of freedom equivalent truss element is used. To resolve the geometric nonlinear behavior for various live load cases, the initial shape analysis is performed for considering dead load before live load analysis. Then the geometric nonlinear analysis for each live load case is performed. The deformed shapes of each model, load-displacement curves of each point and load-tensile force curves for each cable are presented for quantitative study of geometric nonlinear behavior of cable-stayed bridges.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.

Numerical Analysis of the Stability of a High-Strength Joint Buried Pile Retaining Wall Method (수치해석을 이용한 고강도 결합 매입말뚝 흙막이 공법의 안정성 검토에 관한 연구)

  • Hyeok Seo;Yeongpan Ha;Junyoung Choi;Kyungho Park;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.249-262
    • /
    • 2024
  • Retaining walls are widely used in the construction of underground structures. This study reviews the stability of the high-strength joint buried pile method at a site in Korea. [Consider giving details of the location.] The method is assessed by considering the amount of ground settlement, as calculated by finite element analysis and measured at the site. Comparison of the measured and numerical results confirmed the method's stability and field applicability. Settlement of 13.42~13.65 mm was calculated for seven cross-sections [The Abstract should be comprehensible without reference to the main text. The labels A-A' to G-G' should not be introduced here without explanation.] using numerical analysis, and the measured settlement reached a maximum of 2.00 mm. The observed differences and variations [Please state what differed/varied.] did not exceed the design expectations in any section. Instruments installed at the back of the excavation area were used to assess the conditions. An underground gradient meter recorded a cumulative horizontal displacement of between -0.40 and 0.60 mm, and an underground water meter recorded slight displacements of between -0.21 and 0.28 m compared with the initial measurements. A surface settlement meter observed very little movement, with a maximum of -2.00 mm compared with the initial measurement, thereby confirming the establishment of a stable state within the management criteria.

Digital immediate implantation and aesthetic immediate loading on maxillary incisor displaced due to root fracture: a case report (치근파절로 변위된 상악 중절치의 디지털을 이용한 즉시 임플란트 식립 및 심미 수복 증례)

  • Jieun Song;Songyi Park;Chan Park;Kwidug Yun;Hyun-Pil Lim;Sangwon Park
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • To obtain better esthetic results when immediately placing a dental implant, the soft tissue surrounding the implant must be conditioned during healing of the extraction socket. To this end, the emergence profile can be customized through immediate restoration of the provisional prosthesis, and good clinical results can be obtained at the time of definitive restoration in the future, resulting in high patient satisfaction. In this case, horizontal root fracture occurred after trauma to both maxillary central incisors. Immediate implant placement and loading was planned considering aesthetics and alveolar bone condition. By taking an impression using a digital intraoral scanner, a digital diagnostic wax-up was performed to make a more aesthetic prosthesis without applying external force to the traumatized teeth. Based on this, the ideal placement location was determined and immediate implant placement was performed using a 3D printed surgical guide. The provisional prosthesis was restored 5 days after placement, and the definitive zirconia crown was restored through soft tissue conditioning and customization using the shape of the provisional prosthesis for 3 months.

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness (교정용 미니스크류 식립 시 스크류의 길이, 직경 및 피질골 두께에 따른 응력 분포에 관한 3차원 유한요소법적 연구)

  • Lim, Jong-Won;Kim, Wang-Sik;Kim, Il-Kyu;Son, Choong-Yul;Byun, Hyo-In
    • The korean journal of orthodontics
    • /
    • v.33 no.1 s.96
    • /
    • pp.11-20
    • /
    • 2003
  • The purpose of the present study is to evaluate the stress distribution on the length and diameter of the miniscrew and cortical bone width. Three dimensional finite element models were made of diameter 1.2mm, 1.6mm, 2.0mm and length 6.0mm, 8.0mm, 10.0mm, 12.0mm and cortical bone width 1.0mm. Also, another three dimensional finite element models were made of diameter 1.2mm, 1.6mm, 2.0mm and length 8.0mm and cortical bone width 1.0mm, 1.5mm, 2.0mm, 2.5mm. Two-hundred grams horizontal force were applied on the center of the miniscrew head and at that stress distribution and its magnitude had been analyzed by ANSYS, which is three dimensional finite element analysis program. The obtained results were as follows : 1. The comparison of the maximum von-Mises stress in the miniscrew showed that as the diameter increases from 1.2mm to 2.0mm stress has been decreased, while on the same diameter stress was not changed regardless of the length change. 2. The comparison of the maximum von-Mises stress in the cortical and cancellous bone showed that as the diameter increases from 1.2mm to 2.0mm stress has been decreased, while on the same diameter stress was not changed regardless of the length change. 3. In the analysis of the stress distribution in the cortical and cancellous bone, the most of the stress had been absorbed in the cortical bone, and did not transmitted much to the cancellous bone. 4. In the analysis of the maximum von-Mises stress according to the cortical bone width, the same diameter of the miniscrew showed a constant stress value regardless of the cortical bone width change. The above results suggest that the maintenance of the miniscrew is more reliable on diameter than length of the miniscrew.