• Title/Summary/Keyword: horizontal force

Search Result 845, Processing Time 0.026 seconds

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Behavior of Liquid Droplet Driven by Capillarity Force Imbalance on Horizontal Surface Under Various Conditions (다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.359-370
    • /
    • 2015
  • The present study aims to numerically investigate the behavior of liquid droplet driven by capillarity force imbalance on horizontal surfaces ranging from hydrophilic to hydrophobic, under various conditions. The droplet behavior has been simulated using an in-house solution code(PowerCFD), which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The detailed droplet behavior was obtained under various conditions for droplets with different initial shapes, contact angles and surface tension forces(or Bond number). The mechanism of droplet transport was examined using the numerical results on the droplet shapes.

Flow Visualization of Plastic type PCV Valve with Horizontal Force (수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화)

  • Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

Review of effects of friction coefficient of moving bearing on Stability of CWR (가동단 마찰계수가 장대레일 축력 안정성에 미치는 영향 검토)

  • Ryu Jae-Nam;Choi Young-Joon;Yang Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.812-817
    • /
    • 2004
  • Recently drastic improvement of railway technology has been accompanied by the construction of very high-speed tracks. It should be noticed that Continuously Welded Rail(CWR) has played significant role in technical development of railway and that installation of CWR is now being scheduled on existing lines as well as newly-built lines. In general, interaction between CWR and bridge deck takes place on bridge section and additional axial force and displacement is to be developed owing to temperature and braking/acceleration forces. This interaction is known to be mainly governed by span organizations and arrangements of foot bearings. In common practice, movable bearing is stationed and designed on the assumption that it is not able to transfer the horizontal force of upper decks. However, it is well known that horizontal resistance is developed in movable bearings due to friction and that friction coefficient of movable bearing is ranged from 0.03 to 0.20 depending on the material of bearings and magnitude of reactions. Therefore, it is easily reasoned out that friction of movable bearing can influence the mutual behavior of CWR and bridge decks. Suggested in this study is to investigate the validity and efficiency of friction effect of movable bearings in controlling the axial force and displacement of CWR on continuous railway bridges.

  • PDF

An Investigation of Radiation Heat Transfer on The Horizontal Fin of An External Fuel Tank by Flame of a Flying Flare (날아가는 섬광탄이 연료탱크 수평핀에 미치는 복사열전달 연구)

  • Jung, Daehan;Kang, Chihang;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.197-203
    • /
    • 2014
  • In this paper, the effect of unsteady radiation on the horizontal fin of an external fuel tank by flame of a flying flare was analysed to see the temperature increase of the fin and the thermal impact on the fin. Radiation between two surfaces was calculated using the concept of radiation resistance of surface and space including radiation, irradiation and shape factor for two flying trajectories of a flare, maximum temperature of 2200 K, emissivity of 0.95, flying velocity of 30 m/s, and thermal surface area of $0.01m^2$. The result shows that the temperature increase of the fin is 0.236 K, and the thermal effect on the fin is ignorable. And it was found that temperature is increased a little because small amount of heat energy can be radiated due to the short exposure time to the heat source.

An Experimental Study on the Dimensional Error in Ball End Milling (볼 엔드밀 가공에서 치수오차에 관한 실험적 연구)

  • 심기중;유종선;정진용;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.62-69
    • /
    • 2004
  • This paper presents an experimental study on the dimensional error in ball-end milling. In the 3D free-formed surface machining using ball-end milling, while machining conditions are varied due to the Z component of the feed and existing hemisphere part of the ball-end mill, the mechanics of ball-end milling are complicated. In the finishing, most of cutting is performed the ball part of the cutter and the machined surface are required the high quality. But the dimensional errors in the ball-end milling are inevitably caused by tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, the most significant one of dimensional error is usually known as tool deflection. Tool deflection is related to the instantaneous horizontal cutting force and varied the finishing cutting path. It lead to decrease cutting area, thus resulting cutting forces but the dimensional precision surface could not be obtained. So the machining experiments are conducted fur dimensional error investigation and these results may be used for decrease dimensional errors in practice.

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information

  • Hsu, Ting-Yu;Huang, Chih-Hua;Wang, Shiang-Jung
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2021
  • By means of installing sloped rolling-type seismic isolators (SRI), the horizontal acceleration transmitted to the to-be-protected object above can be effectively and significantly reduced under external disturbance. To prevent the maximum horizontal displacement response of SRI from reaching a threshold, designing large and conservative damping force for SRI might be required, which will also enlarge the transmitted acceleration response. In a word, when adopting seismic isolation, minimizing acceleration or displacement responses is always a trade-off. Therefore, this paper proposes that by exploiting the possible information provided by an earthquake early warning system, the damping force applied to SRI which can better control both acceleration and displacement responses might be determined in advance and accordingly adjusted in a semi-active control manner. By using a large number of ground motion records with peak ground acceleration not less than 80 gal, the numerical results present that the maximum horizontal displacement response of SRI is highly correlated with and proportional to some important parameters of input excitations, the velocity pulse energy rate and peak velocity in particular. A control law employing the basic form of hyperbolic tangent function and two objective functions are considered in this study for conceptually developing suitable control algorithms. Compared with the numerical results of simply designing a constant, large damping factor to prevent SRI from pounding, adopting the recommended control algorithms can have more than 60% reduction of acceleration responses in average under the excitations. More importantly, it is effective in reducing acceleration responses under approximately 98% of the excitations.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

Horizontal Behavior Characteristics of Umbrella-Type Micropile Applied in Soft Clay Ground subjected to Seismic Motion (연약점토지반에 적용한 우산형 마이크로파일의 지진시 수평거동 특성)

  • Kim, Soo-Bong;Son, Su-Won;Kim, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.687-695
    • /
    • 2020
  • Micropile is used to improve the stability of existing structures as well as solve various geotechnical problems, such as suppressing slope activity and shearing keys of retaining walls. The existing micropile method has a significantly less capacity to resist a horizontal force than a vertical force0355 Therefore, it is necessary to develop and study an umbrella-type micropile method with excellent seismic performance that can secure seismic performance economically while minimizing structures and ground disturbance areas in the limited space of existing structures. In this study, numerical analysis was performed on the umbrella-type micropile, in which the sloped pile and vertical pile were combined, and the horizontal behavior in soft clay ground during earthquakes was analyzed. Numerical analysis showed that umbrella-type micropile suppresses horizontal displacement in soft ground, and the effect of reducing the horizontal displacement was more pronounced when the embedded depth of the slope pile was 15 m or more. The embedded depth of the micropile and horizontal displacement suppression effect was proportional. Therefore, the umbrella-type micropile has an excellent effect of suppressing horizontal displacement during earthquakes on soft clay ground.