• Title/Summary/Keyword: horizontal electric field

Search Result 89, Processing Time 0.027 seconds

Development of the DGRS enriched in the high frequency range for APR1400 (고진등수 영역이 보강된 APR1400 설계지반응답스펙트럼의 개발)

  • 장영선;김태영;주광호;김종학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.67-74
    • /
    • 2001
  • This paper presents the Safe Shutdown Earthquake(SSE) input motion for the seismic design of the Advanced Power Reactor 1400(APR1400). The Design Ground Response Spectra(DGRS) far the SSE is based on the design spectrum specified in regulatory Guide(RG) 1.60 of U.S. Nuclear Regulatory Commission(US NRC), anchored to a Peak Ground Acceleration(PGA) of 0.3g and enriched in the high frequency range. This SSE seismic input motion is to be applied to the seismic analysis as the free-field seismic motion at the ground surface of both the rock and generic soil sites fur APRI1400. The enrichment for APR1400 seismic input motion is performed considering the current US NRC regulations, the seismic hazard studies performed by the Lawrence Livermore National Laboratory (LINL) and Electric Power Research Institute(EPRI) for the Central and Eastern United States nuclear power plant sites, and the seismic input motions used in the design certifications of the three existing U.S. advanced standard plants. It is represented by a set of DGRS and the accompanying Target Power Spectral Density(PSD) Function in both the horizontal and vertical directions.

  • PDF

Breakdown Characteristics of Liquid Nitrogen Induced by Quench (Quench에 의해 유도되는 액체 $N_2$의 절연파괴 특성)

  • Kim, Yeong-Seok;Jeong, Jong-Man;Gwak, Min-Hwan;Jeong, Sun-Yong;Kim, Sang-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • Electrical breakdown characteristics of liquid nitrogen($LN_2$) used as both coolant and insulator for high $T_c$ superconductor system are very important. This paper presents dynamic breakdown characteristics fo $LN_2$ by quench phenomena of thermal bubble under high electric field. Experimental results revealed dynamic breakdown voltage fell down drastically compared with the static breakdown voltage without the quench. Because of increasing heat power, bubble size becomes big and breakdown voltage decreases. The breakdown voltage mechanism of $LN_2$ depends on thermal bubble effect. In the Electrode arrangement, electrical breakdown voltage of horizontal arrangement appears lower than that of vertical arrangement. Also, we observed the behavior of thermal bubbles in $LN_2$ which were generated after quench using camera.

  • PDF

Propagation Characteristics from Ingested Sources in Human Body (인체 내부 소스에 의한 전파 특성)

  • Kim Bo-Mi;Kim Young-Sik;Kim Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.259-266
    • /
    • 2006
  • This paper presents the propagation characteristics from ingested sources in human body using the human model simulator. The simulator applies the FDTD method to the human data consisting of the human CAD and tissue data. After the accuracy of the simulator is verified, the received fields at one horizontal layer including the small intestine among the digestive organs are calculated in case that the electric field source is implanted in the center of the small intestine. The human propagation characteristics are illustrated by calculating the path loss per unit length according to various received positions from the simulated results.

Growth and Photocurrent Properties for $CuAlSe_2$ Single Crystal Thin film ($CuAlSe_2$ 단결정 박막의 성장과 광전류 특성)

  • Hong, Kwang-Joon;Baek, Seong-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.226-229
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68{\times}10^{-4}\;eV/K)T^2/(T+155K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil (토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.245-251
    • /
    • 2013
  • An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Photocurrent properties for $CdGa_2Se_4$ single crystal thin film grown by using hot wall epitaxy(HWE) method (Hot Wall Epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 광전류 연구)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$ prepared from horizontal electric furnace. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$, obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - $(7.721{\times}10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy$({\Delta}cr)$ and the spin-orbit splitting energy$({\Delta}so)$ for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11^-}$ exciton peaks.

  • PDF

Growth and Photocurrent Study on the Splitting of the Valence Band for $CuInSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Walll Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Yun, Seok-Jin;Hong, Gwang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62{\times}10^{l6}\;cm^{-3}$ and $296\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.1851\;eV\;-\;(8.99{\times}10^{-4}\;eV/K)T^2/(T+153K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuInSe_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}_{so}$ definitely exists in the $\Gamma_6$ states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Helmholtz Coil and Performance of Magnetic Compass (인공자장발생장치와 자기 컴퍼스의 성능)

  • Ahn, Young-wha;Jeong, Kong-heun;Ahn, Jang-young;Sin, Hyeong-il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.111-116
    • /
    • 1983
  • In order to furnish the fundamental data for the domestic production of magnetic compass and the prescription of standardization about it in Korea, authors made the helmholtz coil and investigated the characteristics of them. Subsequently, the damping curves of T190 and T165 compasses in the helmholtz coil were measured and analyzed the performance of those compass. The results obtained are as follows; 1. The relation between electric current (I sub I) to flow in the helmholtz coils, that the thickness of coil is 1mm, diameter 1m, winding number 117, and intensity of magnetic field is presented as follows. Vertical magnetic force: Z(Gauss)=0.34+1.506 I sub(i) Horizontal magnetic force: H(Gauss)=0.183+1.506 I sub(i) 2. Period of T190 compass is longer than T165 compass in all horizontal magnetic force. In the amplitude, the former is larger than the latter above 0.08 Gauss, but this phenomenon is opposed to that below 0.08 Gauss. 3. As the porizontal magnetic force is intensive, period of magnetic compass is short, amplitude is large, and damping degree and damping factor are small. The time elapsed to the principal points of damping curve is proportional to the -0.65 power of the horizontal magnetic force.

  • PDF

Multi-purpose Geophysical Measurements System Using PXI (PXI를 이용한 다목적 물리탐사 측정 시스템)

  • Choi Seong-Jun;Kim Jung-Ho;Sung Nak-Hun;Jeong Ji-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In geophysical field surveys, commercial equipments often fail to resolve the subsurface target or even sometimes fail to be applied because they do not fit to the various field situations or the physical properties of the medium or target. We developed a geophysical measurement system, which can be easily adapted for the various field situations and targets. The system based on PXI with A/D converter and some stand alone equipment such as Network Analyzer was applied to borehole radar survey, borehole sonic measurement and electromagnetic noise measurement. The system for borehole radar survey consists of PXI, Network Analyzer, dipole antennas, GPIB interface is used for PXI to control Network Analyzer. The system for borehole sonic measurement consists of PXI, 24 Bit A/D converter, high voltage pulse generator, transmitting and receiving piezoelectric sensors. The electromagnetic noise measurement system consists of PXI, 24 Bit A/D converter, 2 horizontal component electric field sensors and 2 horizontal and 1 vertical component magnetic filed sensors. The borehole radar system has been successfully applied to detect the width of the artificial tunnel through which the borehole pass and to image buried steel pipe, while the commercial borehole radar equipment failed. The borehole sonic system was tested to detect the width of artificial tunnel and showed a reasonable result. The characteristic of electromagnetic noise was grasped at an urban area with the data from the electromagnetic noise measurement system. The system is also applied to characterize the signal distortion by induction between the electric cables in resistivity survey. The system can be applied various geophysical problems with a simple modification of the system and sensors.