• 제목/요약/키워드: horizontal deflection

검색결과 156건 처리시간 0.024초

볼 엔드밀 가공에서 치수오차에 관한 실험적 연구 (An Experimental Study on the Dimensional Error in Ball End Milling)

  • 심기중;유종선;정진용;서남섭
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.62-69
    • /
    • 2004
  • This paper presents an experimental study on the dimensional error in ball-end milling. In the 3D free-formed surface machining using ball-end milling, while machining conditions are varied due to the Z component of the feed and existing hemisphere part of the ball-end mill, the mechanics of ball-end milling are complicated. In the finishing, most of cutting is performed the ball part of the cutter and the machined surface are required the high quality. But the dimensional errors in the ball-end milling are inevitably caused by tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, the most significant one of dimensional error is usually known as tool deflection. Tool deflection is related to the instantaneous horizontal cutting force and varied the finishing cutting path. It lead to decrease cutting area, thus resulting cutting forces but the dimensional precision surface could not be obtained. So the machining experiments are conducted fur dimensional error investigation and these results may be used for decrease dimensional errors in practice.

Step-Up 구조를 갖는 다층박막 초소형 구동소자의 초기변형 최소화에 관한 연구 (Minimization of Initial Deflection of Multi-Layered Micro-Actuator with Step-Up Structure)

  • 이희중;강신일
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2415-2420
    • /
    • 2002
  • In the present study, a new anchor design was proposed to minimize the initial deflection of micro multi-layer cantilever beam with step-up structure, which is a key component of thin film micro-mirror array. It is important to minimize the initial deflection, caused by residual stress, because it reduces the performance of the actuation. Theoretical and experimental studies were conducted to examine the cause of the initial bending deflection. It was found that the bending deflection at the anchor of the cantilever beam was the primary source of initial deflection. Various anchor designs were proposed and the initial deflections for each design were calculated by finite element analysis. The analysis results were compared with experiments. To reduce the initial deflection a secondary support was added to the conventional structure. The optimal shapes were obtained by simulation and experiment. It was found from the analysis that the ratio or horizontal and vertical dimensions of secondary support was the governing factor, which affected the initial deflection.

터빈블레이드의 5축 고속가공에서 최적가공경로의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이채문;김석원;이득우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

Deflection prediction for reinforced concrete deep beams

  • Lu, Wen-Yao;Hwang, Shyh-Jiann;Lin, Ing-Jaung
    • Computers and Concrete
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 2010
  • A simplified method, developed from the softened strut-and-tie model, for determining the mid-span deflection of deep beams at ultimate state is proposed. The mid-span deflection and shear strength predictions of the proposed model are compared with the experimental data collected from 70 simply supported reinforced concrete deep beams, loaded with concentrated loads located at a distance a from an end reaction. The comparison shows that the proposed model can accurately predict the mid-span deflection and shear strength of deep beams with different shear span-to-depth ratios, different concrete strengths, and different horizontal and vertical hoops.

비파괴 및 재하시험에 의한 노후 교량의 거동특성 (Behavior Properties of Bridge by Non Destructive and Loading Test)

  • 민정기;김영익
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.

모드 해석과 운전 중 변형 형상 기법을 이용한 보행형 관리기의 핸들 진동 감소 방안 (Vibration Reduction of Walking-type Cultivator's Handle using Modal Analysis and Operational Deflection Shapes Techniques)

  • 박영준;이윤세;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2004
  • The objectives of this study were to determine the natural frequency of a walking-type cultivator's handle using a modal analysis, to determine whether or not the handle resonates with forcing frequency induced by its engine, and to determine a method to reduce the handle vibration using a technique of the operational deflection shapes(ODS). Results of the study are as follows: The natural frequencies of the handle up to third harmonics were found to be 20.4, 22.5 and 92.1 Hz in the vertical direction and 14.9, 93, and 132 Hz in the horizontal direction. It was found that the handle does not resonate with the forcing frequency of the engine, which is 52 Hz. The operational deflection shape analysis revealed the deflected shapes of the handle in the vertical and horizontal directions and suggested that the handle vibration can be reduced by adding some mass to the place where the largest deflection occurs. Attaching of 1.1 kg mass adjacent to the largely deflected area resulted in reductions of vibration from 9.45 to 8.03 m/s$^2$ in x-axis direction from 3.89 to 3.16 m/s$^2$ in y-axis direction and from 7.89 to 3.09 m/s$^2$ in z-axis direction, which are respectively 15, 19 and 61% reductions. The total vibration level was reduced by 29%, indicating that mass-adding method by the ODS is very effective for reducing the handle vibrations of the cultivators.

비접촉 평판 디스플레이 이송장치에서 양력을 고려한 평판 디스플레이의 처짐 해석 (Flat Panel Display Deflection Analysis Considering Lift Force in Non-Contact Flat Panel Display Conveyer System)

  • 황성현;최현창;노태정;손태영;박범석
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.451-457
    • /
    • 2008
  • Flat Panel Display(FPD) is widely used a video display terminals to consumer products of LCD and PDP. The contamination and damage were affected by using the previous contact conveyor's method. In this paper, it analyzes the FPD deflection to develop the non-contact FPD transfer process using lift force. Each conveyor's equipment is called a horizontal conveyor, vertical conveyor and robot pick-up equipment. As result of an analysis of FPD panel's deflection, a robot pick-up equipment has performed according to under the present conditions like panel's weight and loaded glass to move FPD panel from one place to other places properly. Results of the analysis showed 0.474 mm, 0.424 mm and 1.237 mm. Those values are lower than a predicted optimum values : 2 mm for both horizontal and vertical conveyers; 5 mm for robot pick-up equipment. Therefore, those results verify each equipment have safety and reliability.

윤하중 시험과 유한요소해석을 통한 강상판 교면포장의 거동분석 연구 (An Evaluation of Orthotropic Steel Bridge Deck Pavement Behavior Using Wheel Load Testing and 3D Finite Element Analysis)

  • 김태우;최지영;이현종;백종은;엄병식
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.103-110
    • /
    • 2013
  • PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.

Effect of horizontal joints on structural behavior of sustainable self-compacting reinforced concrete beams

  • Ibrahim, Omar Mohamed Omar;Heniegal, Ashraf Mohamed;Ibrahim, Khamis Gamal;Agwa, Ibrahim Saad
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.455-462
    • /
    • 2020
  • This study investigated the effect of horizontal casting joints on the mechanical properties and structural behavior of sustainable self-compacting reinforced concrete beams (SCRCB). The experimental research consisted of two stages. The first stage used four types of concrete mixtures which were produced to indicate the effects of cement replaced with cement waste at 0%, 5%, 10%, and 15% by weight of cement content on fresh concrete properties of self-compacting concrete (SCC) such as, passing ability, filling ability, and segregation resistance. In addition, mechanical properties such as compressive, tensile, and flexural strength were also studied. The second stage selected the best mixture from the first stage and studied the effect of horizontal casting joints on the structural behavior of sustainable SCRCBs. The effect of horizontal casting joints on the mechanical properties and structural behavior were at the 25%, 50%, 75%, and 100% of sample height. Load deflection, failure mode, and theoretical analysis were studied. Results indicated that the incorporation of replacement with cement waste by 5% to 10% led to economic and environmental advantages, and the results were acceptable for fresh and mechanical properties. The results indicated that delaying the time for casting the second layer and increasing the cement waste in concrete mixtures had a great effect on the mechanical properties of SCC. The ultimate load capacity of horizontal casting joints reinforced concrete beams slightly decreased compared with the control beam. The maximum deflection of casting joint beams with 75% of samples height is similar with the control beam. The experimental results of reinforced concrete beams were substantially acceptable with the theoretical results. The failure modes obtained the best forced casting joint on the structural behavior at 50% height of casting in the beam.

지반굴착시 인접구조물의 손상 영향 평가에 대한 수치해석 (Numerical Analysis for the Assessment of Building Damage in Urban Excavation)

  • 이민근;황의석;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.561-568
    • /
    • 2003
  • The protection of adjacent structures in urban excavation has been an important issue. But the research on the interaction between ground movements and adjacent structure has been scarce, therefore this study was necessitated. Current design practice for the prediction of excavation-induced ground movements heavily rely on empirical method. In this study, damage levels of brick building are examined closely by means of angular distortion, deflection ratio, horizontal strain. The results of numerical analysis indicated that the movement of actual building was 60∼65% of the ground movement, while angular distortion was 45∼65%. Also numerical analysis for the assessment of brick building can be applied to the building protection at various construction stages.

  • PDF