• 제목/요약/키워드: horizontal cyclic loading

검색결과 88건 처리시간 0.027초

3차원 수치해석을 이용한 군말뚝기초의 반복수평하중재하실험에 대한 연구 (3D numerical simulation of group-pile foundation subjected to horizontal cyclic loading)

  • 진영지;김진만;최봉혁;이대영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.515-518
    • /
    • 2010
  • Horizontal forces may form a major part of the loading system for structures supported on pile groups. It is known that during a strong earthquake, the dynamic behavior of a group-pile foundation is related not only to the inertial force coming from the superstructures but also to the deformation of the surrounding ground. Therefore, it is necessary to understand the behaviors of the group-pile foundations and superstructures during major earthquakes. In this paper, numerical simulation of real-scale group-pile foundation subjected to horizontal cyclic loading is conducted by using a program named as DBLEAVES. In the analysis, nonlinear behaviors of ground and piles are described by cyclic mobility model and axial force dependent model (AFD model). The purpose of this paper is to prove availability of the analysis method by comparing numerical results and test results.

  • PDF

장기 반복하중을 받는 모래지반의 축방향 누적소성변형률 평가 (Evaluation of Accumulated Axial Plastic Strain of Sands under Long-term Cyclic Loading)

  • 서민창;이시훈;김성렬
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Offshore wind turbines have been constructed extensively throughout the world. These turbines are subjected to approximately $10^8$ horizontal load cycles produced from wind, waves, and current during their lifetimes. Therefore, the accumulated displacement of the foundation under horizontal cyclic loading has significant effects on the foundation design of a wind turbine. Akili(2006) and Achmus et al.(2009) performed cyclic triaxial tests on dry sands and proposed an empirical model for predicting the accumulated plastic strain of sands under long-term cyclic loading. In this study, cyclic triaxial tests were performed to analyze the cyclic loading behaviors of dry sands. A total of 27 test cases were performed by varying three parameters: the relative density of the sands, cyclic load level, and confining stress. The test results showed that the accumulated plastic strain increased with an increase in the cyclic load level and a decrease in the relative density of the sand. The confining stress had less effect on the plastic strain. In addition, the plastic strain at the 1st loading cycle was about 57% of the accumulated strain at 1,000 cycles. Finally, the input parameters of the empirical models of Akili(2006) and Achmus et al.(2009) were evaluated by using the relative density of the sand and the cyclic load level.

Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall

  • Lin, Qiang;Li, Sheng-cai;Zhu, Yongfu
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.261-272
    • /
    • 2021
  • The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.

정지토압계수 측정에 관한 연구 II (A Study on Measuring the Coefficient of Earth Pressure at Rest II)

  • 송무효
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.58-69
    • /
    • 2004
  • In order to investigate the characteristics of the lateral earth pressure at rest, under hysteretic $K_o-loading/unloading$ conditions, seven types of multi-cyclic models have been studied, using dry sand. For this study, the new type of $K_o-oedometer$ apparatus was developed, and the horizontal pressure was accurately measured. The multi-cyclic models consist of primarily 3 cases: (i) $K_o-test$ under the same loading / unloading condition, (ii) multi-cyclic loading / unloading $K_o-test$ exceeding the maximum pre-vertical stress, and (iii) multi-cyclic loading / unloading $K_o-test$ within the maximum pre-vertical stress. Results fromthe multi-cyclic model indicated that a single-cyclic model could be extended if the exponents for the unloading condition $(\alpha\;and\;\alpha^*)$ and the reloading coefficients $(m_r,\;and\;m_r^{\ast})$ were primarily dependent upon the type of model, number of cycles, and the relative density.

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.

$K_o$-재하/제하에 의한 건조모래의 거동(II): 다주기 시험 (Behaviour of Dry Sand under $K_o$-Loading / Unloading Conditions(II) : Hysteretic Test)

  • 정성교;정진교
    • 한국지반공학회지:지반
    • /
    • 제11권1호
    • /
    • pp.23-40
    • /
    • 1995
  • 다주기 Ko-재하/제하 시에 수평응력의 변화특성을 관찰하기 위하여 7종류의 시험모형을 선 정하였고, Ko조건을 크게 만족할 수 있도록 특별히 고안한압밀링 형태의 Ko-시험기를 제작하여 실내 건조된 모래에 대하여 실험을 수행하였다. 시험모형은 동일한 재하/제하 응력의 반복, 최대선행응력을 초과하는 반복 재하/제하, 그리고 최대선행 연직응력 내의 반복 재하/제하 Ko시험으로 구분된다. 실험결과에서 다주기 이력모형도 역시 기존의 단주기 이력모형을 확대하여 사용할 수 있음을 보였다. 여기서, 제하시의 지수 (a 및 a*)와 재재하 시의 계수(mr 및 mr*)는 응력이력의 형태, 반복회수 및 상대밀도에 따라 주로 지배되었다.

  • PDF

Mechanical properties of material in Q345GJ-C thick steel plates

  • Yang, Na;Su, Chao;Wang, Xiao-Feng;Bai, Fan
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.517-536
    • /
    • 2016
  • Thick steel plate is commonly found with mega steel structures but its properties have not been fully explored. Grade Q345GJ-C steel plate with thickness ranging from 60 mm to 120 mm are studied in this paper. Both the static and cyclic performance of material in different directions (horizontal and through-thickness directions) and locations (outer surface, 1/4 thickness and mid-depth) are experimentally obtained. The accumulative damage during cyclic loading is also calculated by using bilinear mixed hardening (BMH) constitutive relationship together with the Lemaitre's damage model. Results show that the static properties are better at the outer surface of thick steel plates than those at mid-depth. Properties in through-thickness direction are similar to those at mid-depth in the horizontal direction. The cyclic performance at different locations of a given plate is similar within the range of strain amplitude studied. However, when damage parameters identified from monotonic tensile tests are included in the numerical simulation of cyclic loading tests, damage is found accumulating faster at mid-depth than close to outer surface.

단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구 (An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading)

  • 고태영;이승철;김동근;최영태
    • 터널과지하공간
    • /
    • 제21권4호
    • /
    • pp.307-319
    • /
    • 2011
  • 교통, 굴착, 발파 등에 의한 반복하중은 오랜 시간에 걸쳐서 암석의 미세균열 성장을 일으키며, 암석의 강도 등에 영향을 미치기 때문에 반복하중에 의한 균열의 성장, 결합은 장시간 안정성 평가에 중요한 영향을 미친다. 본 연구에서는 두 개의 초기 균열을 가지는 모사 암석 시험편에 단조증가 및 반복하중을 가하여 하중 조건에 따른 균열의 성장과 결합유형을 조사하였다. 단조증가하중, 반복하중 시험 모두에서 서로 유사한 날개균열 시작 위치, 날개균열 각도, 균열 성장 순서, 균열 결합 형태가 관측되었다. 본 연구에서 관찰된 균열 결합은 크게 3종류로 전단에 의한 결합, 1개의 날개 혹은 인장 균열에 의한 결합 그리고 2개의 날개 혹은 인장 균열에 의한 결합으로 요약될 수 있다. 피로균열은 반복하중 시험에서만 발생하였으며 성장 방향은 이차균열과 유사하게 초기균열과 같은 방향 혹은 하중방향과 직교인 수평방향으로 관찰되었다.

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.

Ductility of open piled wharves under reversed cyclic loads

  • Yokota, Hiroshi;El-Bakry, Hazem M.F.
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.615-632
    • /
    • 2001
  • Ductility of open piled wharves under reversed cyclic loads has been investigated. Experimental testing of five wharf models having a scale of about 1:4 was conducted under the application of horizontal reversed cyclic loading. The experiments were designed to focus on the horizontal ultimate load, ductility and failure mode of the considered wharf models. Nonlinear numerical analyses using the finite element method were also performed on numerical models representing the experimentally tested wharves. The results of the experimental tests showed that open piled wharves possessed favourable ductile behaviour and that their load bearing capacity did not depreciate until a ductility factor of 3 to 4 was reached. The numerical analysis showed that the relative rotation that took place at the joints between the steel piles and the R.C. beam was responsible for a considerable portion of the total horizontal deformation of the wharves. Therefore, it was concluded that introducing the joint stiffness in calculating the deformations of open piled wharves was important to achieve reasonable accuracy.