• 제목/요약/키워드: horizontal cyclic load

검색결과 75건 처리시간 0.025초

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.

건조 사질토 지반에 설치된 석션 버켓기초의 장기 반복하중에 의한 누적회전각 산정 (Accumulated Rotations of Suction Bucket Foundations under Long-term Cyclic Loads in Dry Sandy Ground)

  • 이시훈;최창호;김성렬
    • 한국지반공학회논문집
    • /
    • 제32권12호
    • /
    • pp.69-78
    • /
    • 2016
  • 최근에 해상 풍력발전기의 기초구조물로 석션 버켓기초가 적용되고 있다. 그런데, 석션기초는 보통 해양 연약지반에 설치되므로 장기 반복하중에 의해 누적변위가 발생할 수 있다. 본 연구에서는 1-g 모형실험을 수행하여 장기 수평 반복하중을 받는 석션 버켓기초의 누적 회전각을 분석하였다. 지반조건은 2가지 밀도의 건조 사질토 지반에 대하여 실험하였다. 모형석션 버켓기초의 근입깊이, 모형지반의 밀도, 반복하중의 크기를 변화시키며 실험을 수행하였다. 수평 반복하중은 일방향 재하로 최대 $10^4$번까지 재하하였다. 실험결과, 석션 버켓기초의 누적회전각은 재하횟수와 재하진폭이 증가에 비례하여 증가하였다. 실험결과를 이용하여 건조 사질토 지반에 근입된 석션 버켓기초의 장기 누적회전각을 산정할 수 있는 경험식을 제안하였다.

Ductility of open piled wharves under reversed cyclic loads

  • Yokota, Hiroshi;El-Bakry, Hazem M.F.
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.615-632
    • /
    • 2001
  • Ductility of open piled wharves under reversed cyclic loads has been investigated. Experimental testing of five wharf models having a scale of about 1:4 was conducted under the application of horizontal reversed cyclic loading. The experiments were designed to focus on the horizontal ultimate load, ductility and failure mode of the considered wharf models. Nonlinear numerical analyses using the finite element method were also performed on numerical models representing the experimentally tested wharves. The results of the experimental tests showed that open piled wharves possessed favourable ductile behaviour and that their load bearing capacity did not depreciate until a ductility factor of 3 to 4 was reached. The numerical analysis showed that the relative rotation that took place at the joints between the steel piles and the R.C. beam was responsible for a considerable portion of the total horizontal deformation of the wharves. Therefore, it was concluded that introducing the joint stiffness in calculating the deformations of open piled wharves was important to achieve reasonable accuracy.

Frictional responses of concrete-to-concrete bedding planes under complex loading conditions

  • Dang, Wengang;Konietzky, Heinz;Li, Xiang
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.253-259
    • /
    • 2019
  • Concrete-to-concrete bedding planes (CCBP) are observed from time to time due to the multistep hardening process of the concrete materials. In this paper, a series of direct/cyclic shear tests are performed on CCBP under static and dynamic normal load conditions to study the frictional behavior effect by the shear velocities, normal impact frequencies, horizontal shear frequencies, normal impact force amplitudes, horizontal shear displacement amplitudes and normal load levels. According to the experimental results, apparent friction coefficient k ($k=F_{Shear}/F_{Normal}$) shows different patterns under static and dynamic load conditions at the stable shear stage. k is nearly constant in direct shear tests under constant normal load conditions (DCNL), while it is cyclically changing with nearly constant peak value and valley value for the direct shear tests under dynamic normal load conditions (DDNL), where k increases with decreasing normal force and decreases with increasing normal force. Shear velocity has little influence on peak values of k for the DCNL tests, but increasing shear velocity leads to increasing valley values of k for DDNL tests. It is also found that, the valley values of k ascend with decreasing impact normal force amplitude in DDNL tests. The changing pattern of k for the cyclic shear tests under constant and dynamic normal load conditions (CCNL and CDNL tests) are similar, but the peak value of k is smaller in CDNL tests than that in CCNL tests. Normal load levels, shear displacement amplitudes, vertical impact frequencies, horizontal shear frequencies and normal impact force amplitudes have little influence on the changing pattern of k for the cyclic shear tests. The tests of this study provide useful data in understanding the frictional behavior of the CCBP under distinct loadings, and these findings are very important for analyzing the stability of the jointed geotechnical structures under complicated in situ stress conditions.

장기 반복하중을 받는 모래지반의 축방향 누적소성변형률 평가 (Evaluation of Accumulated Axial Plastic Strain of Sands under Long-term Cyclic Loading)

  • 서민창;이시훈;김성렬
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Offshore wind turbines have been constructed extensively throughout the world. These turbines are subjected to approximately $10^8$ horizontal load cycles produced from wind, waves, and current during their lifetimes. Therefore, the accumulated displacement of the foundation under horizontal cyclic loading has significant effects on the foundation design of a wind turbine. Akili(2006) and Achmus et al.(2009) performed cyclic triaxial tests on dry sands and proposed an empirical model for predicting the accumulated plastic strain of sands under long-term cyclic loading. In this study, cyclic triaxial tests were performed to analyze the cyclic loading behaviors of dry sands. A total of 27 test cases were performed by varying three parameters: the relative density of the sands, cyclic load level, and confining stress. The test results showed that the accumulated plastic strain increased with an increase in the cyclic load level and a decrease in the relative density of the sand. The confining stress had less effect on the plastic strain. In addition, the plastic strain at the 1st loading cycle was about 57% of the accumulated strain at 1,000 cycles. Finally, the input parameters of the empirical models of Akili(2006) and Achmus et al.(2009) were evaluated by using the relative density of the sand and the cyclic load level.

Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall

  • Lin, Qiang;Li, Sheng-cai;Zhu, Yongfu
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.261-272
    • /
    • 2021
  • The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.

Design Load Analysis of Current Power Rotor and Tower Interaction

  • Jo, Chul H.;Lee, Kang-Hee;Hwang, Su-Jin;Lee, Jun-Ho
    • International Journal of Ocean System Engineering
    • /
    • 제3권4호
    • /
    • pp.164-168
    • /
    • 2013
  • Tidal-current power is now recognized as a clean power resource. The turbine blade is the fundamental component of a tidal current power turbine. The kinetic energy available within a tidal current can be converted into rotational power by turbine blades. While in service, turbine blades are generally subjected to cyclic fatigue loading due to their rotation and the rotor-tower interaction. Predicting the fatigue life under a hydrodynamic fatigue load is very important to prevent blade failure while in service. To predict the fatigue life, hydrodynamic load data should be acquired. In this study, the vibration characteristics were analyzed based on three-dimensional unsteady simulations to obtain the cyclic fatigue load. Our results can be applied to the fatigue design of horizontal-axis tidal turbines.

반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구 (Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading)

  • 이호;정환목;차병기;변상민
    • 한국공간구조학회논문집
    • /
    • 제9권2호
    • /
    • pp.45-52
    • /
    • 2009
  • 이 논문은 반복-수평력을 받는 프리캐스트 기둥-RC 기초 Anchor 접합부의 반복-수평력에 대한 내력 특성을 규명하기 위함이다. 본 연구는 하부 기초에 프리캐스트 콘크리트 기둥과 기초를 Anchor식으로 접합한 콘크리트 구조체가 정확한 응력전달 경로 및 파괴 메커니즘에 있어서 기존의 콘크리트-강재 연결부와 어떠한 차이가 있는지 제시한다. 반복-수평력 작용하의 철근의 인발력 실험결과는 프리캐스트 기둥-RC 기초 Anchor 시공에 필요한 철근의 최소 필요 삽입 깊이를 제시한다. 또한, 실험을 통해 제시된 응력 전달 경로 및 파괴 메커니즘을 제품별 메뉴얼에 제시되어 있는 메커니즘과 비교, 검토함으로서 접합부의 명확한 응력전달 경로 및 파괴 메커니즘을 시공자의 요구 성능에 맞게 제시한다. 그러므로 본 연구를 통해 프리캐스트 콘크리트 기둥의 정확한 주근의 개수, 공칭직경, 정착 길이 등에 대한 최적의 설계 조건을 제시함으로써, 시공 시 이들에 대한 정확한 데이터를 제공한다.

  • PDF

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.

반복하중을 받는 대형 콘크리트 판구조의 비선형 해석 (Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads)

  • 정봉오;서수연;이원호;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF