• Title/Summary/Keyword: hoop

Search Result 342, Processing Time 0.023 seconds

Cyclic-loading Tests of 113-Scale R.C. Exterior Beam-column Joints With Non-Seismic Detailing (비내진 상세를 가진 1/3 축소 R.C. 외부 접합부의 반복 횡하중 실험)

  • 이한선;차병기;고동우;임동운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with nonseismic detailing. To do this, an exterior beam-column subassemblage was selected from a 10-story RC building and 6 1/3-scale specimens were manufactured with 3 variables; ⑴ with and without slab, ⑵ upward and downward direction of anchorage for the bottom bar in beams, and ⑶ with and without hoop bars in the joint region. The test results have shown that ⑴ the existence of slab increased the strength in positive and negative moment, 25% and 62%, respectively; ⑵ the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation when compared with the case of seismic details; and ⑶ the existence of hoop bars in the joint region does not show significant difference because the size of column is much larger than that of beam.m.

  • PDF

Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics

  • Nazeer, Malik M.;Khan, M. Afzal;Haq, A-Ul
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.47-62
    • /
    • 2003
  • The nonlinear dependence aspect of various conical tool indentation parameters leading to an optimum tool semi angle value for easiest perforation is plotted and discussed explicitly in this work with the conclusion that tool angle has an optimum response towards most of the indentation parameters. Around this optimum angle, the aluminium sheets showed minimum fracture toughness as well as minimum work input to overcome the offered resistance. At the end, the mechanism leading to this phenomenon is presented with the conclusion that plastic flow dominates as the dimple semi cone angle reaches 35 and both pre and post plastic flow perforations lead the tool semi cone angle value towards this dimple cone semi angle of plastic flow initiation for its optimum performance. It is also concluded that specimen material failure is solely under tensile hoop stress and hence results into radial cracks initiation and propagation.

An Experimental Study on Evaluation of Structural Performance on Corroded Reinforced Concrete Columns (철근이 부식된 철근콘크리트 기둥의 구조성능 평가에 대한 실험적 연구)

  • Won, Jong-Ho;Han, Nam-Hee;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.711-717
    • /
    • 2000
  • This paper presents an experimental study on evaluation of structural performance on corroded reinforced concrete columns under only axial load, combined axial load and lateral load. This test was carried on the twenty-six reinforced concrete columns with $150\times150\times800$mm size subjected to combined axial load and lateral load. Effects of key variables such as the corrosion level, the number of hoop, the corrosion of hoop are studied in this program. The results of this study show that the capacity of column axial force was decreased as corrosion level was increased, especially, rapid development was shown after 10% corrosion level and the maximum moment capacity of column was shown at corrosion level 1.2%, while rapid decrease was shown after 4.3% corrosion level. Also we found that influence of corrosion was decreased to number of tie bar was increased.

  • PDF

Themally Loaded Characteristics of Diesel Engine Piston (디젤기계의 피스톤 열부하 특성에 관한 연구)

  • Han, Mun-Sik;Park, Tae-In
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.91-103
    • /
    • 1985
  • In this paper, temperature distribution and thermal stress are investigated considering engine peak pressure and the time average temperature distribution in the piston under running conditions for the diesel engine. The induced stress are calculated by the Finite Element Method(FEM). The results obtained are summerized as follows. 1) The results calculated by the FEM present good agreement with other numerical solution in literature. 2) It is confirmed that maximum compressive stress are induced in the part of outside wall between the piston crown and the pin bush. 3) In the axial direction, the hoop stresses are changed its sigh at the portion of crown near the inner wall side 4)Large gradient of temperature is shown in the piston crown near the side wall in the axial direction, in the part between the piton crown and the pin bush in radical direction 5)in case of stress distribution of piston wall surface in the axial direction, the hoop stress is a little greater than axial stress, and the latter is greater than the radial stress

  • PDF

Evaluation of the Tensile Properties of Fuel Cladding at High Temperatures Using a Ring Specimen (링 시험편을 이용한 피복관의 고온 인장특성 평가)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.600-605
    • /
    • 2005
  • In this study, the ring tensile test at high temperature was suggested to evaluate the hoop tensile properties of small tube such as the cladding in the nuclear reactor Using the Arsene's ring model, the ring tensile test was performed and the test data were calibrated. From the result of the ring test with strain gauge and the numerical analysis with 1/8 model, LCRR(load-displacement conversion relationship of ring specimen) was determined. We could obtain the hoop tensile properties by means of applying the LCRR to the calibrated data of the ring tensile test. A few difference was observed in view of the shape of fractured surface and the fracture mechanism between at the high temperature and at the room temperature.

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

A Study on the Behavior of High-Strength Concrete Columns with Variable Lateral Confinement (횡구속재의 종류에 따른 고강도콘크리트 기둥의 내력 및 연성에 관한 연구)

  • 임정은;김은호;정덕우;윤승조;김성수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.487-492
    • /
    • 2003
  • High-strength concrete(HSC) is a new construction material with enormous potential. Structures using high-strength concrete are to be coming more and more popular. But high-strength reinforced concrete columns show brittle behavior. It, therefore, is necessary to improve the ductility of HSC members. The purpose of this study is to investigate the ductility and strength of high-strength columns with variable lateral confinement under concentric axial load. Five HSC columns with compressive strength 68㎫ are designed with variable lateral confinements such as carbon fiber sheet(CFS), glass fiber sheet(GFS), and metal lath. Test results indicate that specimen confined by CFS show 11% higher maximum strength, 2.74 times ductility than A specimen using hoop. On comparing with the specimen A and B confined metal lath instead of hoop, strength decrease of 3%, and ductility increase of 1.21 times were observed.

  • PDF

An Experimental Study on Seismic Performance of RC Bridge Columns with Interlocking spirals and Interlocking circular hoops (결합나선철근 및 결합원형띠철근 교각의 내진성능에 관한 실험적 연구)

  • 고성현;이재훈;서진원;이지영;손혁수;최진호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.943-948
    • /
    • 2003
  • The experimental study for oblong section was carried out by the column test in weak axis. The column specimens had 3 types of transverse steel configurations, such as interlocking spirals, interlocking circular hoop ties and rectangular ties. The oblong columns with interlocking spirals and with interlocking circular hoop ties showed better seismic performance than the rectangular columns with rectangular hoops and cross-ties. The objectives of this study were to provide experimental data on the behavior of interlocking spiral columns under cyclic loading, to compare the performance of columns with interlocking spirals to columns with various transverse steel configurations, to study the flexural detailing of interlocking spirals, interlocking circular hoops, and other transverse steel configurations as the transverse reinforcement, and to make recommendations for the design of bridge columns incorporating interlocking spirals, circular hoops as the transverse reinforcement.

  • PDF

Stress analysis of marine diesel engine piston (선박용 디젤기관의 피스톤 응력해석)

  • 한문식;김상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.143-152
    • /
    • 1985
  • In this paper, temperature distribution and thermal stress are investigated considering engine peak pressure and the time average temperature distribution in the piston under running conditions for the marine diesel engine. The induced stress are calculated by the Finite Element Method (FEM). The results obtained are summerized as follows. 1) The results calculated by the FEM present good agreement with other numerical solution in literatures. 2) It is comfirmed that the maximum compressive stresses are induced in the part of outside wall between the piston crown and the pin bush 3) In the axial direction, the hoop stresses are changed its sign at the portion of crown near the inner wall side. 4) Large gradient of temperature is shown in the piston crown near the side wall in the axial direction, in the part between the piston crown and the pin bush in radial direction. 5) In case of stress distribution of piston wall surface in the axial direction, the hoop stress is a little greater than axial stress, and the latter is greater than the radial stress.

  • PDF

Hoop Energy Storage System(HESS) for Electric Power Utility (전력 계통에의 이용을 위한 후프 에너지 저장 시스템)

  • 백광현;정기형
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.173-178
    • /
    • 1995
  • Hoop Energy Storage System(HESS) for electric power utility were discussed laying primary stress on the diurnal load leveling of Korean electric power system. A number of potential storage technologies are outlined and possibility for real application of HESS was suggested. Primary system variables were determined on the basis of state of electric power demand-supply of 1994. As a prerequisite technology for HESS, noncontacting support using magnetic pressure and high power conversion were discussed.

  • PDF