• Title/Summary/Keyword: honeycomb sandwich structures

Search Result 63, Processing Time 0.022 seconds

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications

  • Antony, Sheedev;Cherouat, Abel;Montay, Guillaume
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.87-103
    • /
    • 2019
  • Recently, natural fibre composites are widely used in aerospace industries due to their good specific mechanical properties, better acoustic properties, light weight, readily availability, biodegradability, recyclability, etc. In this study, the hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure were proposed for aerospace applications. Firstly, the hemp fibre woven fabrics based honeycomb sandwich structures were manufactured and experimental mechanical tests (compressive and flexural) were performed in the laboratory. Numerical simulation was also performed and analysed to validate the proposed methodology. Different complex shaped aircraft part CAD models were created and numerical analysis was carried out in order to have a better understanding about the complex honeycomb sandwich structures.

Characteristics of Strength and Deformation of Aluminum Honeycomb Sandwich Composites Under Bending Loading (굽힘 하중을 받는 알루미늄 하니컴 샌드위치 복합재료의 강도 및 변형 특성)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • The strength characteristics as well as deformation behaviors of honeycomb sandwich composite (HSC) structures were investigated under bending in consideration of various failure modes such as skin layer yielding, interface-delamination, core shear deformation and local buckling. Deformation behaviors of honeycomb sandwich plates were observed with various types of aluminum honeycomb core and skin layer. Their finite-element analysis simulation with a real model of honeycomb core was performed to analyze stresses and deformation behaviors of honeycomb sandwich plates. Its results were very comparable to the experimental ones. Consequently, the increase in skin layer thickness and in cell size of honeycomb core had dominant effects on the strength and deformation behaviors of honeycomb sandwich composites.

  • PDF

Weight Minimization of a Beam Structure Using a Honeycomb Sandwich Panel (허니컴 샌드위치 패널을 이용한 보 구조물의 경량화에 관한 연구)

  • 성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.125-128
    • /
    • 2003
  • In machine tool design, fast traversing cannot be achieved without reducing mass of the moving part. Honeycomb sandwich panel is extremely lightweight, and relatively rigid at the same time. We can reduce much weight when we selectively utilize honeycomb sandwich panels as stiffeners on machine tool structures. Feasibility of reducing weight is studied using a beam structure with both ends fixed.

  • PDF

Elastic Analysis of Honeycomb Materials Considering Cell Size and Cell Wall Thickness (셀 크기와 셀벽 두께를 고려한 하니컴 재료의 탄성 해석)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • Honeycomb sandwich composite structures have been widely used in aircraft and military industry because of light weight and high stiffness. Accurate mechanical properties of honeycomb materials are needed for analysis of sandwich composites. In this study, theoretical formula for elastic modulus of honeycomb materials was established considering bending and axial deformations of their walls. Finite-element analysis results were compared with theoretical ones of the longitudinal and transverse moduli of honeycomb materials. Consequently, the mechanical properties of honeycomb materials could be analytically predicted.

  • PDF

Investigation on Adhesion Properties of Sandwich Composite Structures Considering on Surface Treatments

  • Park, Gwanglim;Oh, Kyungwon;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • Recently, various kinds of study on light weight structure are performing in the world. The Al honeycomb sandwich structural type adopt for improvement of lightness and structural stability to major part structure of aircraft or spacecraft. Adhesion badness properties of adhesive and adhesion properties of fillet mainly studied about al honeycomb structure. But study for adhesive properties of sandwich construction with surface treatment of Aluminum alloy barely performed. In this study, adhesive film was used between Al and honeycomb core of honeycomb panel[1]. The study for adhesive properties of sandwich construction with surface treatment of AA 5052 skin was performed.

A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite (하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구)

  • Lee, Jae-Youl;Shin, Kwang-Bok;Lee, Sang-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions

  • Soleimani-Javid, Zeinab;Arshid, Ehsan;Khorasani, Mohammad;Amir, Saeed;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.449-460
    • /
    • 2021
  • Flexoelectricity is an interesting materials' property that is more touchable in small scales. This property beside the sandwich structures placed in the center of scientists' attention due to their extraordinary effects on the mechanical properties. Furthermore, in the passage of decades, more elaborated sandwich structures took into consideration results from using honeycomb core. This kind of structure, inspiring from honeycomb core, provides more stiffness to weight ratio, which plays a crucial role in different industries. In this paper, based on the Love-Kirchhoff's hypothesis, Hamilton's principle, modified couple stress theory and Fourier series analytical method, equations of motion for a sandwich plate containing a honeycomb core integrated by two face-sheets have derived and solved analytically. The equations of both face sheets have derived by flexoelectricity consideration. Moreover, it should be noticed that the whole structure rests on the visco-Pasternak foundation. Conducting current research provided an acceptable and throughout study based on flexoelectricity to address the effect of materials' characteristics, length-scale parameter, aspect, and thickness ratios and boundary conditions on the natural frequency of honeycomb sandwich plates. Also, based on the presented figures and tables, there is a close agreement between previous studies and recent work. Due to the high ratio of strength to weight, current model analyzing is capable of taking into account for different vehicles' manufacturing in a high range of industries.

Dynamic results of GNPRC sandwich shells

  • E. Mohammad-Rezaei Bidgoli;M. Arefi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.263-273
    • /
    • 2023
  • This paper investigates dynamic characteristics of a graphene nanoplatelets reinforced composite (GNPRC) sandwich doubly curved shell based on the first-order shear deformation theory (FSDT) and Hamilton's principle. The sandwich doubly curved shell is fabricated from a core made of honeycomb materials sandwiched by composite GNPs reinforced face-sheets. Effective materials properties of composite face-sheets are assumed to vary based on Halpin-Tsai micromechanical models and rule of mixture. Furthermore, the material properties of honeycomb core are estimated using Gibson's formula. The fundamental frequencies of the shell are computed with changes of main geometrical and material properties such as amount and distribution type of graphene nanoplatelets, side length ratio, thickness to length ratio of and side length ratio of honeycomb. The Navier's technique is presented to obtain responses. Accuracy and trueness of the present model and analytical solution is confirmed through comparison of the results with available results in literature. It is concluded that an increase in thickness to length ratio yields a softer core with lower natural frequencies. Furthermore, increase in height to length ratio leads to significant decrease in natural frequencies.

Evaluation of Strength Characteristics of HoneyComb Sandwitch Structure Due to the Repeated Curing Cycle in Repair Process (하니콤 샌드위치 구조물의 수리 시 반복 경화에 따른 강도 특성 평가)

  • 손영준;이기현;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.83-87
    • /
    • 2002
  • Aerospace industries are widely using honeycomb sandwich structures that it has high specific strength and stiffness, chemical material resistance and fatigue resistance. But, in repairing process of damaged areas, one of the problems is that delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted Flatwise tensile, Drum peel and Long beam flexural strength tests to evaluate the degree of degradation of mechanical properties of the honeycomb sandwich structures by affecting thermal aging. As the results, the decrease of mechanical strength was observed at the specific specimen which is exposed over 50hrs at $127^{\circ}C$.

  • PDF