• 제목/요약/키워드: honeycomb sandwich composite

검색결과 114건 처리시간 0.023초

유리섬유/에폭시 복합재료와 허니컴을 이용한 고성능의 마이크로스트립 안테나 설계 (High-Gain and Wideband Microstrip Antenna Using Glass/Epoxy Composite and Nomex Honeycomb)

  • 유치상;황운봉
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper we developed Composite-Smart-Structures(CSS) using sandwich structure composed of Glass/Epoxy laminates and Nomex honeycomb and microstrip antenna. Transmission/reflection theory shows that antenna performances can be improved due to multiple reflection by Glass/Epoxy facesheet, and honeycomb is used for air gap between antenna and facesheet. Stacked radiating patches are used for the wideband. Facesheet and honeycomb thicknesses are selected considering both wideband and high gain. Measured electrical performances show that CSS has wide bandwidth over $10\%$ and higher gain by 3.5dBi than initially designed antenna, and no doubt it has excellent mechanical performances by sandwich effect given by composite laminates and honeycomb core. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers, promising innovative future communication technology.

  • PDF

하니컴코어 재료의 기계적 물성 예측과 하니컴 샌드위치 복합재료 평판의 층간응력 해석 (Prediction of Mechanical Properties of Honeycomb Core Materials and Analysis of Interlaminar Stress of Honeycomb Sandwich Composite Plate)

  • 김형구;최낙삼
    • Composites Research
    • /
    • 제17권1호
    • /
    • pp.29-37
    • /
    • 2004
  • 하니컴 샌드위치 복합재료(HSC) 구조물은 높은 강성 및 경량화가 요구되는 항공ㆍ우주 및 군수 산업 등에 폭 넓게 이용되고 있으며 하니컴 샌드위치 복합재료의 정확한 강도 해석에 있어서 하니컴 코어의 기계적 물성 예측이 필요하다. 본 연구에서는 하니컴 코어 벽의 굽힘, 축 방향 및 전단 변형을 고려한 에너지 법을 사용하여 하니컴 코어 재료의 각 방향 탄성계수 및 포아송 비와 같은 기계적 물성 값을 구하기 위한 예측식을 유도하고, 이 이론 예측값이 유한요소 해석 프로그램인 ABAQUS 6.3을 이용하여 구한 결과와 거의 일치하고 있음을 알았다. 또한 하니컴 샌드위치 복합재료 평판의 인장 실험 및 유한요소 시뮬레이션을 수행하여 변형 거동 예측 및 층간 응력을 해석하였다. 하니컴 코어층과 표면층 사이의 전단 응력의 증가는 HSC 평판의 층간분리 현상의 주원인임을 알 수 있었다.

Rubber-Filled 샌드위치 복합재료의 진동 특성 평가 (Dynamic Performance of Rubber-Filled Sandwich Composite)

  • 황호;조치룡;김동욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.238-243
    • /
    • 2004
  • A new sandwich composite was investigated in this paper. The honeycomb core of this composite was filled with viscoelastic material in order to obtain an improved damping performance. The viscoelastic fillings in the honeycomb cells was hoped to act as dampers and provide the function of energy dissipation in this combined material system. Dynamic test was set up to the specimens with various stacked carbon/epoxy laminate facesheets, $[0/90]_{4s}$, $[0/45/-45/90]_{2s}$, $[45/-45]_{4s}$. Frequency response, displacement response and damping ratio were checked and compared for the both groups of specimens, with and without rubber fillings. The experimental results provided a good agreement with our material design concept.

  • PDF

알루미늄 폼 및 허니컴 샌드위치 복합재료의 압축실험에 관한 연구 (Study on Compression Tests of Aluminum Foam and Honeycomb Sandwich Composites)

  • 방승옥;김기선;김세환;송수구;조재웅
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.3802-3807
    • /
    • 2011
  • 본 연구에서는 알루미늄 폼 및 허니컴 샌드위치 복합재료의 면내 외 압축실험을 수행하였다. 실험을 통하여 하중-변위의 관계를 분석하고 압축 특성을 비교한다. 시험편은 만능재료시험기를 사용하여 1 mm/min로 압축을 하였다. 실험과정은 카메라로 촬영하고, 로드셀에서 나오는 데이터는 컴퓨터로 저장하였다. 실험결과를 보면 하중이 증가함에 따라 알루미늄 폼 및 허니컴 심재에 좌굴이 발생하였다. 면내 압축실험에서 알루미늄 폼 및 허니컴 샌드위치 시험편의 압축 최대하중은 비슷하였다. 그러나 비중을 고려하면 허니컴이 폼보다 압축 특성이 더 우수하다. 면외 압축실험에서도 알루미늄 허니컴 샌드위치 복합재료의 압축 최대하중이 알루미늄 폼 샌드위치 복합재료보다 높게 나왔다.

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구 (A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite)

  • 이재열;신광복;이상진
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

경화공정 및 수분흡수에 따른 복합재료 하니콤 샌드위치 판넬의 접합강도특성 연구 (Bondline Strength Evaluation of Honeycomb Sandwich Panel For Cure Process and Moisture Absorption)

  • 최흥섭;전흥재;남재도
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.115-126
    • /
    • 2001
  • In this paper, through a series of comparative experiments, effects of two different cure processing methods, cocure and precure, on the mechanical properties of honeycomb core materials for aircraft applications are considered. Mass of moisture accumulated into the closed cells of the sandwich panel specimen from the measured mass of moisture diffused to the full saturation state into the elements(skin, adhesive layer, Nomex honeycomb), consisting the honeycomb sandwich specimen has been calculated. Water reservoir of 70$\^{C}$ was used to have specimens absorb moisture to see the influence of moisture absorbed into sandwich panel on its mechanical properties. For the repair condition holding for 2 hours at 177$\^{C}$(350℉) temperature, a pressure due to the vapor expansion in each cell of the sandwich panel, which may result in the local separation of the interface between laminated skin and the surface of the honeycomb, has been estimated by vapor pressure-temperature relation from the thermodynamic steam table and compared to the pressure from the ideal gas state equation. The bonding strengths of the laminated skins on the flat surface of the Nomex honeycomb have been compared by the flatwise tension test and climbing drum peel test performed at room temperature for dry, wet and wet-repair specimens, respectively.

샌드위치 패널 및 내장재 특성 연구 (Characteristics of Sandwich Panels and Indoor Composite Materials)

  • 허완수;이상원;김장엽;이종호
    • Composites Research
    • /
    • 제14권6호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 연구에서는 샌드위치 패널 구성 요소인 면재와 심재를 변화시켜 4종류의 샌드위치 패널을 제작하였다. 그리고 제작된 샌드위치 패널의 기계적 특성과 철도차량 개발시 중요한 요인으로 작용하는 음향투과 특성 그리고 화재에서의 안정성을 확인하기 위하여 난연특성 실험을 통하여 샌드위치 패널의 특성을 검토하고자 하였다. 샌드위치 패널의 기계적 특성은 알루미늄 면재 + 알루미늄 하니컴 심재로 구성된 샌드위치 패널이 면방향 인장강도와 변방향 압축강도 특성에서 우수하며 알루미늄 면재 + 노멕스 하니컴 심재로 구성된 샌드위치 패널은 면방향 압축강도와 굽힘 강도가 우수한 것으로 확인되었다. 알루미늄 면재 + PMI 포옴 심재로 구성된 샌드위치 패널은 심재의 전단강도 및 면재의 굽힙강도가 우수하였다. 난연성 시험에서는 phenol 수지 면재와 2종의 외국 면재는 모든 시험 결과에서 유사한 견과를 확인하였다.

  • PDF

항공기용 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안 (A Study on the Analysis of causes & minimizing of Defects at Composite Materials Sandwich Aircraft Structure in Autoclave Processing)

  • 권순철;임철문;최병근;이세원;한중원;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.29-33
    • /
    • 2000
  • The purpose of this paper is to determine the effect of the autoclave inner pressure rate, heat-up rate, tool round angle, Thickness of core, height of joggle on defects, and to minimize the defects of aircraft sandwich structure reinforced with honeycomb core occurred in autoclave processing. The results showed that the geometry of aircraft sandwich structure and tool such as tool round angle, Thickness of core, height of joggle, and the autoclave cure conditions such as inner pressure rate, heat up rate strongly affected the core movement, core wrinkle, bridge phenomenon of prepreg and depression of core that occurred in autoclave processing.

  • PDF