• Title/Summary/Keyword: honeycomb

Search Result 621, Processing Time 0.033 seconds

Analysis of Sound Insulation Performance of Honeycomb Composite Panels for Cruise Ships (크루즈선박용 허니컴 패널의 차음 성능 해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Roh, Jae-Ouk;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2014
  • In this paper, the interface matrix of honeycomb composite panel has been derived by the governing equation of a honeycomb sandwich panel. The interface matrix of honeycomb panel is added to the previously developed transfer matrix method, thus analysis of the multi-layered insulation composite panel with honeycomb is accomplished. Furthermore, predictions of sound transmission loss(STL) for the ship's insulation panel with honeycomb and mineral wool are presented. The insulation performance of the honeycomb used for skin of the ship's insulation panel is better than that of 0.35 mm steel panel by 2dB, approximately. Although honeycomb panel has inefficient insulation performance beside steel panel, honeycomb panel achieve improvements in the performance of weight reduction. The surface density of the panel with honeycomb is rather than with steel by $5.2kg/m^2$. It is decrease in weight by 31.7 %.

Parallel Paths in Honeycomb Network (Honeycomb 연결망에서의 병렬 경로)

  • Kim, Cheol;Lee, Hyeong-Ok;Lim, Hyeong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.297-300
    • /
    • 1998
  • A honeycomb network is considered as a multiprocessor interconnection network. The network cost defined as the product of degree and diameter is better for honeycomb networks than for other types of meshes. Parallel paths offer us bypasses when the networks have faulty nodes or edges. In this paper, we present a method to construct a parallel path in honeycomb network, and show that the fault diameter for the honeycomb network is d+8, where d is diameter of the honeycomb network.

  • PDF

A Numerical Study on Flow Characteristics of a Honeycomb seal (Honeycomb Seal의 유동 특성 해석)

  • Hong, E.;Hur, N.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.153-157
    • /
    • 2000
  • Honeycomb seals are used widely in gas turbines due to their good sealing performance and rotor-dynamic stability. Three-Dimensional complex flows in a honeycomb seal were analyzed in the present study. Friction factors were computed to predict the performance of a honeycomb seal based on pressure drop results for various honeycomb cell geometry and Reynolds numbers. Computed results for friction factor are compared to the available experimental data. Unlike in the experiment, where 'Friction-Factor Jump' phenomena are reported for some cases, computed results show no jump phenomena. The friction factors, however, are in good agreement with the experiment in no-jump cases.

  • PDF

An Experimental Study on Optimum Honeycomb Sizes of a Flat-Plate Solar Collector (평판형(平板形) 태양열집열기(太陽熱集熱器)의 최적(最適)하니콤 크기에 관(關)한 연구(硏究))

  • Kim, T.J.;Kim, J.B.
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.3-11
    • /
    • 1988
  • To suppress the natural convection within enclosure spacing it has been shown theoretically and experimentally that the introduction of cell walls will effectively raise the critical Rayleigh number by providing more shear surfaces within the fluid. For a solar collector, a useful solar thermal converter requires effective control of heat losses. It has been reported that the natural convection can be suppressed and the heat performances of the solar collector increased by placing thin, poorly conducting material honeycomb between the absorber plate and the coverglass. The heat performances were measured and compared directly throughout the simultaneous installation of two solar collectors, one with honeycomb structures fabricated from thin poly carbonate sheet and the other without honeycomb structures. Various tilt angles of 30, 45 and 60 deg. from the horizontal and the honeycomb sizes ($W{\times}H$) of $10{\times}10,\;10{\times}20$ and $10{\times}40mm$ were utilized in the present investigation. It is found that the larger the tilt angle are, the greater the heat losses are, and that the smaller the honeycomb size is, the larger suppression effect of heat losses are. Especially, at tilt angles of 30 degree, the heat use ratio of solar collector with the honeycomb sizes of $10{\times}10mm$ improved approximately 29.5% more than that without honeycomb structures.

  • PDF

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Multi-Land (이종 표면을 갖는 실의 특성해석)

  • Ha, Tae Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.447-452
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that leakage is increasing and rotordynamic stability is decreasing as increasing the length of smooth land part in the honeycomb/smooth land seal.

  • PDF

The Characteristic of Friction-Factor on Honeycomb Surfaces (Part I : Experimantal Tests and Friction-Factor Modeling) (허니콤 표면의 마찰계수 특성에 관한 연구 (Part 1 : 표면 마찰계수 측정 및 모델링))

  • 하태웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1430-1438
    • /
    • 1994
  • Friction-factors for honeycomb surfaces are measured with a flat plate tester. The flat plate test apparatus is described and method is discussed for determining the friction-factor experimentally. The friction-factor is calculated for the flat plate test based on the Fanno-line flow. The test parameters are honeycomb cell width, depth, clearance, inlet pressure, and Reynolds number(or Mach number). A new empirical friction-factor model for honeycomb surfaces are developed as a function of these parameters.

Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가)

  • Kim, Yun-Hae;Choi, Byung-Geun;Son, Jin-Ho;Jo, Young-Dae;Eum, Soo-Hyun;Woo, Byung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

Study on equivalent material property of Tetra Chiral Honeycomb structure using finite element method (유한 요소 해석을 이용한 Tetra Chiral Honeycomb 구조의 등가 물성치에 대한 연구)

  • Park, Jung-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.190-194
    • /
    • 2016
  • 자연에서 안정적이고 경제성이 높은 구조로 벌집 구조가 많이 언급이 된다. 이러한 벌집 구조의 특징으로 인해 많은 공학자들이 그 구조를 모방하여 적용하고 있다. 벌집 구조에도 다양한 종류가 존재하지만 그 중 음의 푸아송 비(Poisson's ratio)를 갖는 Chiral Honeycomb 구조가 많이 연구되고 있다. 푸아송 비는 물질이나 구조의 고유한 물성치로 종, 횡 방향의 변형율로 나타내며 이 값으로 외부 조건으로부터의 변형을 예측 할 수 있게 된다. 흔히 푸아송 비는 양의 값을 가지지만 Chiral Honeycomb 구조는 음의 푸아송 비를 가져 기존의 구조와는 다른 기계적 성질을 가지게 된다. 이 논문에서는 Chiral Honeycomb 구조 중에서도 4개의 관절(ligament)를 가지는 Tetra Chiral Honeycomb 구조에 대해 EDISON용 CASADsovler 프로그램을 통해 유한 요소 해석을 수행하여 등가 물성치를 구해 보았으며 기존 실험의 값들과 비교를 통해 해석을 위해 필요한 적절한 대표 체적에 대해 확인해 보았다.

  • PDF

Prediction to Shock Absorption Energy of an Aluminum Honeycomb (알루미늄 허니콤의 충격 에너지 흡수 특성 예측)

  • Kim, Hyun-Duk;Lee, Hyuk-Hee;Hwang, Do-Soon;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.391-399
    • /
    • 2011
  • The purpose of this paper is to predict the shock absorbing characteristics of the aluminum honeycomb in a lunar lander. Aluminum honeycomb has been used for shock absorbers of lunar lander due to its characteristics such as light weight, high energy absorption efficiency and applicability under severe space environments. Crush strength of the honeycomb should have strength to endure during shock energy absorbing process. In this paper, the crush strength, which depends on the shape of honeycomb and impact velocity, is estimated using FEM. Ls-dyna is used for finite element analysis of the honeycomb shock absorber. The unit cells of the honeycomb shape are modeled and used for the finite element analysis. Energy absorption characteristics are decided considering several conditions such as impact velocity, foil thickness and branch angle of the honeycomb.