본 논문은 3차원 모델링을 위한 두 개의 3차원 데이터들을 정합하는데 있어서 효율적인 방법을 제안한다. 3차원 데이터들은 서로 임의의 각도에서 취득한 것으로 취득 장치의 위치 및 2차원 영상정보가 포함 되어있다. 이 정보들을 이용하여 보다 빠르고 정확한 정합을 이루는 방법을 제안한다. 2차원 영상정보를 이용하여 보다 쉽게 대응점들을 찾아내는 것으로 대응하는 4개의 점에 대한 체적을 이용하여 모형의 크기를 일치시킨다. 또한, 이 점들로부터 얻어낸 좌표축의 호모그라피(homography)를 추출해냄으로써 2개의 데이터에 대한 정합과정은 보다 빠르고 정확하게 이루어진다. 제안한 알고리즘의 장점은 2차원 영상정보를 이용하기 때문에 정합하는 데에 있어서 오류가 적고 반복하는 과정이 불필요하다. 또한, 취득된 2차원 영상정보를 정합하고, 이를 3차원 모형에 2차원 영상을 씌움으로써 정합은 완벽하게 이루어진다.
본 논문에서는 비 교정 영상에서 3장의 평면 패턴 영상들을 위치시켜, 한 장의 영상으로 찍어 얻은 영상으로부터 이들 평면 패턴 영상 간에 호모그래피(homography)로 카메라 교정을 하는 새로운 기법이 제안된다. 비교정 영상에서 3차원 재구성을 하려면 카메라 교정이 필수적이다. 제안된 방법은 대상 영상내에 존재하는 패턴 영상 간에 호모그래피를 계산함으로써, 3차원 재구성 시, 보다 쉽고 간단히 구현한다. 실험 결과는 제안된 방법(한 장내에 3장의 패턴영상 사용에 의한 카메라 교정법이 기존 방법(3장의 패턴영상 사용에 비해 매우 유용함을 확인한다. 또한, 비 교정 입력 영상에서 제안된 알고리즘을 이용한3차원 재구성의 예로 증명한다.
본 논문에서는 두 개의 카메라를 이용하여 보다 정확한 동공 인식을 통한 원격방식의 시선 추적을 제안한다. 헤드 장착형 시선추적용으로 개발된 Starburst 알고리즘은 원격방식의 시선추적에서는 카메라가 보다 넓은 영역을 보기 때문에 눈썹, 눈꼬리 등 외란이 많아 스타버스트 알고리즘을 바로 적용하면 동공 중심 추출에 실패하는 경우가 많았다. 이에 템플렛매칭을 이용하여 대략적인 동공영역을 찾고, 찾은 영역 내에서만 스타버스트 알고리즘으로 동공의 경계 후보점들을 찾은 후 보완된 RANSAC 알고리즘으로 타원근사하여 동공의 중심을 추출하였다. 추출된 동공중심을 머리의 움직임에 거의 영향을 받지 않도록 4개의 적외선 LED를 모니터 네 구석에 부착하고 Homography normalization을 적용하였다. 스크린 좌표계로 변환할 때 기존에는 호모그래피를 사용하였으나, 카메라 렌즈의 비선형왜곡을 보상하기 위해 여기서는 고차다항식을 이용한 캘리브레이션 기법을 이용하였다. 끝으로, 두 대의 카메라를 사용하여 정확도와 신회성이 향상됨을 보인다.
In this paper, we describe correspondence among multiple images taken by multiple cameras. The correspondence among multiple views is an interesting problem which often appears in the application like visual surveillance or gesture recognition system. We use the principal axis and the ground plane homography to estimate foot of human. The principal axis belongs to the subtracted silhouette-based region of human using subtraction of the predetermined multiple background models with current image which includes moving person. For the calculation of the ground plane homography, we use landmarks on the ground plane in 3D space. Thus the ground plane homography means the relation of two common points in different views. In the normal human being, the foot of human has an exactly same position in the 3D space and we represent it to the intersection in this paper. The intersection occurs when the principal axis in an image crosses to the transformed ground plane from other image. However the positions of the intersection are different depend on camera views. Therefore we construct the correspondence that means the relationship between the intersection in current image and the transformed intersection from other image by homography. Those correspondences should confirm within a short distance measuring in the top viewed plane. Thus, we track a person by these corresponding points on the ground plane. Experimental result shows the accuracy of the proposed algorithm has almost 90% of detecting person for tracking based on correspondence of intersections.
본 논문은 다중 영상과 호모그래피 행렬을 통해 소실점 위치의 정확도를 향상시키는 알고리즘을 제안한다. 단일 영상만을 활용하여 소실점 검출이 가능하지만, 여러 영상의 정보를 활용하여 소실점의 위치를 보정하면 소실점 위치의 정확도를 더 향상시킬 수 있다. 위치 정확도가 향상된 소실점을 통해 더 정확한 실내공간 정보 검출이 가능하다. 이를 위해 본 논문에서는 3개의 영상을 입력받아 정보를 검출한 후 영상의 벽면 간의 호모그래피 행렬을 검출하고, 검출된 호모그래피를 이용하여 소실점의 위치를 변환한다. 최종적으로 변환된 소실점 중 최적의 위치에 있는 소실점을 찾아내어 소실점 위치를 보정 함으로써 소실점 위치의 정확도를 향상시킨다. 실험 결과를 통해 기존의 알고리즘과 제안하는 알고리즘의 정확도를 비교 분석한다. 제안하는 알고리즘을 통해 소실점 위치에 대한 오차 각도가 약 1.62% 감소함을 확인하였고, 이를 통해 더 정밀한 소실점 검출이 가능하였다. 또한, 제안한 알고리즘을 통해 향상된 소실점을 이용하여 검출한 레이아웃이 기존 알고리즘의 결과에 비교해 더 정확한 것을 확인 할 수 있었다.
파노라마 영상을 재구성하는 기존의 방법은 Labeling을 이용하여 객체를 비교한 후에 결합시키는 방법을 적용하였으나 시간이 많이 소요되고 각각의 이미지를 Labeling하는 과정에서 개체 간의 불일치가 발생하여 정확히 영상을 결합할 수 없는 경우가 발생한다. 따라서 본 논문에서는 처리 속도 개선을 위하여 전체 이미지의 1/3만 Labeling한 후에 객체 간을 비교하여 결함시킨다. 그리고 각도가 틀린 경우에는 특징점을 찾아내는 SURF 알고리즘을 적용하여 각각의 이미지에서 Labeling한 사각형의 4개의 포인터에 대해 1개의 중심점을 구하여 Homography를 이용하여 2개의 영상을 자연스럽게 정합한다. 본 논문에서 제안한 파노라마 영상 재구성 방법의 성능을 평가하기 위하여 다양한 이미지를 대상으로 실험한 결과, 기존의 방법보다 영상을 재구성하는데 효과적인 것을 확인하였다. 그리고 처리 속도 측면에서도 개선되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권9호
/
pp.2299-2311
/
2013
As portable multimedia devices become more popular and smaller, the use of portable projectors is also rapidly increasing. However, when portable projectors are used in mobile environments in which a dedicated planar screen is not available, the problem of geometric distortion of the projected image often arises. In this paper, we present a geometric image compensation method for portable projectors to compensate for geometric distortions of images projected on various types of planar or nonplanar projection surfaces. The proposed method is based on extraction of the two-dimensional (2D) geometric information of a projection area, setting of the compensation area, and prewarping using 2D homography. The experimental results show that the proposed method allows effective compensation for waved and arbitrarily shaped projection areas, as well as tilted and bent surfaces that are often found in the mobile environment. Furthermore, the proposed method is more computationally efficient than conventional image compensation methods that use 3D geometric information.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권4호
/
pp.297-301
/
2005
In this paper, we propose a method to estimate camera motion parameter based on invariant point features. Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time. The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum. In order to complement these shortfalls, we, first propose constructing feature models using invariant vector of geometry. Secondly, we propose a two-stage calculation method to improve accuracy and convergence by using homography and LM method. In the experiment, we compare and analyze the proposed method with existing method to demonstrate the superiority of the proposed algorithms.
본 논문에서는 다수의 실내 영상으로부터 영상을 촬영한 카메라의 속성정보와 실내 환경에 대한 기하정보를 추출하는 방법을 제안한다. BSP-Tree를 이용하여 주어진 실영상을 각각의 부분 영역이 실제로도 평면 영역에 해당되도록 분할하였으며, 특징점 대응을 통해 각 분할된 영역의 영상간 대응을 찾고 이로부터 각 분할 영역의 homography를 계산하였다 또한 간단한 가정을 통해 계산된 homography로부터 각 분할영역에 대응된 평면의 방정식과 각 영상을 촬영한 카메라의 속성을 찾아낼 수 있믐을 보였다. 본 논문에서 제안한 방법은 현재 본 연구팀이 구현 중인 영상기반 모델링 시스템에서 핵심적인 기능을 수행하리라 기대된다.
본 논문에서는 FAST(Features from Accelerated Segment Test) 특징점 검출기와 SIFT(Scale Invariant Feature Transform) 특징점 서술자(descriptor)를 사용하여 시점 변화에 강인한 특징점 정합 기법을 제안한다. 기존의 FAST 기법은 영상의 에지 부분을 따라서 불필요하게 특징점을 많이 추출하게 되는데 이러한 단점을 주곡률(principal curvatures)을 적용하여 개선한다. 추출된 특징점을 SIFT 서술자를 통해 기술하고 시점이 다른 두 영상으부터 구해진 정합쌍에 RANSAC(RANdom SAmple Consensus) 기법을 통하여 호모그래피(homography)를 계산한다. 시점 변화에 강인한 특징점 정합을 위해서 기준 영상의 특징점들을 호모그래피 변환을 통해 변경된 좌표와 시점이 다른 영상의 특징점 좌표간의 유클리디언(Euclidean) 거리를 통해 정합쌍을 분류한다. 같은 물체나 장소에 대해 시점이 변화된 여러 영상에 대한 실험을 통해서 제안하는 정합 기법이 적은 계산량으로 기존의 특징점 정합 기법보다 우수한 성능을 보여주는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.