• Title/Summary/Keyword: homogeneous structure

Search Result 646, Processing Time 0.021 seconds

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

Sintering Behavior and Mechanical Strength of Hydroxyapatite/Polyacrylic Acid Homogeneous Composite (Hydroxyapatite/Polyacrylic Acid 균질복합체의 소결 특성 및 기계적 강도)

  • 이병교;이석기;구광모;이미혜;이형동
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.566-571
    • /
    • 2003
  • Hydroxyapatite (HAp)/Polyacrylic Acid(PAA) homogeneous composites of four different composition ratio were preparation by co-precipitation process with synthetic HAp and PAA as a binder. HAP/PAA composites were molding by cold isostatic pressing and were sintering by various condition in air. Crystallinity and structure of sintered HAp/PAA composites were investigated by XRD and FT-IR. Also, the compressive strength and the fracture surface of sintered specimens were measured by UTM and SEM. HAp/PAA composites were showed phase transformation of partially ${\alpha}$, ${\beta}$-tricalcium phosphate at sintering condition of 1200$^{\circ}C$ and 3 h. The pore size and porosity of sintered body were showed the range of 0.2∼3.0 $\mu\textrm{m}$ and 0.49∼13.43%, respectively. The compressive strength of sintered specimens were appeared the range of 36.6∼58.2 MPa. From these results, the sintered HAp/PAA comosites can be accounted for the microporous HAp having a good compressive strength due to homogeneous pore morphology.

Comparison of Microstructure and Hardness of Pure Copper Fabricated by Multi-Axial Forging and Multi-Axial Diagonal Forging (다축단조와 다축대각단조로 제조된 순동의 미세조직 및 경도 비교)

  • Lee, J.K.;Kwon, S.C.;Kim, S.T.;Jeong, H.T.;Kim, Y.G.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.257-265
    • /
    • 2019
  • Multi-axial forging (MAF), a severe plastic deformation technique, is known to be difficult to obtain materials with homogeneous microstructures. Recently, multi-axial diagonal forging (MADF) process has been developed to solve this problem. In this study, in order to compare the microstructural and mechanical homogeneities of the MAFed and MADFed samples, oxygen-free copper (OFC) cubes measuring 25 mm in length were deformed through MAF and MADF processes and the average grain size and hardness were measured at the edge, face, and center regions of the samples. In the MAFed samples, ultrafine grains were formed at the center region, but a considerable amount of coarse grains remain at the face region. Therefore, the MAFed samples showed a high inhomogeneity in regards to grain size and hardness. On the contrary, in the case of the MADFed sample, the grain sizes at the edge, face, and center regions were similar and the hardness in all the regions are almost similar. This indicates that the MADFed sample has a homogeneous microstructure and uniform mechanical properties, which can be attributed to the homogeneous distribution of the effective strain throughout the material. The results of this study suggests that the MADF is a suitable process in the fabrication of high-strength copper materials with a homogeneous and ultrafine grain structure.

Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment

  • Ngo, Van-Linh;Kim, Jae-Min;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2019
  • This paper illustrates the results of a series of seismic geotechnical centrifuge experiments to explore dynamic structure-soil-structure interaction (SSSI) of two structures (named S1 and S2) installed on ground surface. A dense homogeneous ground is prepared in an equivalent shear beam (ESB) container. Two structural models are designed to elicit soil-foundation-structure interaction (SFSI) with different masses, heights, and dynamic characteristics. Five experimental tests are carried out for: (1) two reference responses of the two structures and (2) the response of two structures closely located at three ranges of distance. It is found that differential settlements of both structures increase and the smaller structure (S2) inversely rotates out of the other (S1) when they interact with each other. S2 structure experiences less settlement and uplift when at a close distance to the S1 structure. Furthermore, the S1 structure, which is larger one, shows a larger rocking and a smaller sliding response due to the SSSI effects, while S2 structure tends to slide more than that in the reference test, which is illustrated by an increase in sliding response and rocking stiffness as well as a decrease in moment-to-shear ratio (M/H·L) of the S2 structure.

Seismic retrofit of a soft first story structure considering soil effect

  • Michael Adane;Jinkoo Kim
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.345-352
    • /
    • 2023
  • This paper studied the effect of soil-structure interaction (SSI) on the seismic response and retrofit of a reinforced concrete structure with a soft-first story for different soil types. A 5-story structure built on a 30m deep homogeneous soil mass was considered as a case study structure, and steel column jacketing and steel bracing were chosen as seismic retrofit methods. Seismic responses of a fixed-base and a flexible base structure subjected to seven scaled earthquake records were obtained using the software OpenSees to investigate the effect of soil on seismic response and retrofit. The nonlinearBeamColumn elements with the fiber sections were used to simulate the nonlinear behavior of the beams and columns. Soil properties were defined based on shear wave velocity according to categorized site classes defined in ASCE-7. The finite element model of the soil was made using isoparametric four-noded quadrilateral elements and the nonlinear dynamic responses of the combined system of soil and structure were calculated in the OpenSees. The analysis results indicate that the soil-structure interaction plays an important role in the seismic performance and retrofit of a structure with a soft-first story. It was observed that column steel jacketing was effective in the retrofit of the model structure on a fixed base, whereas stronger retrofit measures such as steel bracing were needed when soil-structure interaction was considered.

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL

  • Kim, Nam-Gil
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.185-201
    • /
    • 2009
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ of a nonflat complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In this paper, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant.

Experimental evaluation of discrete sliding mode controller for piezo actuated structure with multisensor data fusion

  • Arunshankar, J.;Umapathy, M.;Bandhopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.569-587
    • /
    • 2013
  • This paper evaluates the closed loop performance of the reaching law based discrete sliding mode controller with multisensor data fusion (MSDF) in real time, by controlling the first two vibrating modes of a piezo actuated structure. The vibration is measured using two homogeneous piezo sensors. The states estimated from sensors output are fused. Four fusion algorithms are considered, whose output is used to control the structural vibration. The controller is designed using a model identified through linear Recursive Least Square (RLS) method, based on ARX model. Improved vibration suppression is achieved with fused data as compared to single sensor. The experimental evaluation of the closed loop performance of sliding mode controller with data fusion applied to piezo actuated structure is the contribution in this work.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR

  • Kim, Nam-Gil;Ki, U-Hang;Kurihara, Hiroyuki
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.535-550
    • /
    • 2008
  • Let M be a real hypersurface of a complex space form with almost contact metric structure $({\phi},{\xi},{\eta},g)$. In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex: projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant and not equal to -c/24 on M, where c is a constant holomorphic sectional curvature of a complex space form.

Structure and Textural Property of Mook (묵의 구조와 텍스쳐)

  • Bae, Kwang-Soon;Sohn, Kyung-Hee;Moon, Soo-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.185-191
    • /
    • 1984
  • The structure and textural properties of the traditional starch gel-form food Mook were investigated with the use of the Scanning Electron Microscope and Instron universal testing machine. Sensory evaluation was undertaken to evaluate the relationship between structure and textural properties of starch gel. When pure mungbean, potato, and sweet potato starches as well as 30% mungbean starches added to potato and to sweet potato starches were evaluated, it was found that mungbean starch gel had homogeneous and porous structure and showed the highest acceptability.

  • PDF