Browse > Article
http://dx.doi.org/10.12989/gae.2019.19.5.407

Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment  

Ngo, Van-Linh (Department of Civil and Environmental Engineering, Chonnam National University)
Kim, Jae-Min (Department of Civil Engineering, Chonnam National University)
Lee, Changho (Department of Marine and Civil Engineering, Chonnam National University)
Publication Information
Geomechanics and Engineering / v.19, no.5, 2019 , pp. 407-420 More about this Journal
Abstract
This paper illustrates the results of a series of seismic geotechnical centrifuge experiments to explore dynamic structure-soil-structure interaction (SSSI) of two structures (named S1 and S2) installed on ground surface. A dense homogeneous ground is prepared in an equivalent shear beam (ESB) container. Two structural models are designed to elicit soil-foundation-structure interaction (SFSI) with different masses, heights, and dynamic characteristics. Five experimental tests are carried out for: (1) two reference responses of the two structures and (2) the response of two structures closely located at three ranges of distance. It is found that differential settlements of both structures increase and the smaller structure (S2) inversely rotates out of the other (S1) when they interact with each other. S2 structure experiences less settlement and uplift when at a close distance to the S1 structure. Furthermore, the S1 structure, which is larger one, shows a larger rocking and a smaller sliding response due to the SSSI effects, while S2 structure tends to slide more than that in the reference test, which is illustrated by an increase in sliding response and rocking stiffness as well as a decrease in moment-to-shear ratio (M/H·L) of the S2 structure.
Keywords
structure-soil-structure interaction; over-turning moment; base-shear force; rocking stiffness; moment-to-shear ratio;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 ASCE (2017), Seismic Analysis of Safety-Related Nuclear Structures (4-16), American Society of Civil Engineers, U.S.A.
2 Behnamfar, F. and Sugimura, Y. (1999), "Dynamic response of adjacent structures under spatially variable seismic waves", Prob. Eng. Mech., 14(1), 33-44. https://doi.org/10.1016/S0266-8920(98)00033-2.   DOI
3 Chen, J.C., Masienikov, O.R. and Johnson, J.J. (1997), "Seismic response of a nuclear power generation complex including structure-to-structure interaction effects", Proceedings of the American Society of Mechanical Engineers (ASME) Pressure Vessel and Piping Conference, Orlando, Florida, U.S.A., January.
4 Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. https://doi.org/10.12989/gae.2018.15.4.987.   DOI
5 Cremer, C., Pecker, A. and Davenne, L. (2001), "Cyclic macro-element for soil-structure interaction: material and geometrical non-linearities", Int. J. Numer. Anal. Meth. Geomech., 25(13), 1257-1284. https://doi.org/10.1002/nag.175.   DOI
6 Drosos, V., Georgarakos, T., Loli, M., Anastasopoulos, I., Zarzouras, O. and Gazetas, G. (2012), "Soil-foundation-structure interaction with mobilization of bearing capacity: Experimental study on sand", J. Geotech. Geoenviron. Eng., 138(11), 1369-1386. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000705.   DOI
7 Fatahi, B., Tabatabaiefar, S.H.R. and Samali, B. (2014), "Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil", Geomech. Eng., 6(3), 293-320. http://dx.doi.org/10.12989/gae.2014.6.3.293.   DOI
8 Gajan, S. and Kutter, B.L. (2009b), "Effects of moment-to-shear ratio on combined cyclic load-displacement behavior of shallow foundations from centrifuge experiments", J. Geotech. Geoenviron. Eng., 135(8), 1044-105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000034.   DOI
9 Gajan, S. and Kutter, B.L. (2008), "Capacity, settlement, and energy dissipation of shallow footings subjected to rocking", J. Geotech. Geoenviron. Eng., 134(8), 1129-1141. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1129).   DOI
10 Gajan, S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C. and Martin, G.R. (2005), "Centrifuge modeling of load-deformation behavior of rocking shallow foundations", Soil Dyn. Earthq. Eng., 25(7), 773-783. https://doi.org/10.1016/j.soildyn.2004.11.019.   DOI
11 Gazetas, G. (1991), Foundation Vibrations, in Foundation Engineering Handbook, Springer US, Boston, Massachusetts, U.S.A., 553-593.
12 Gazetas, G., Anastasopoulos, I. and Garini, E. (2014), "Geotechnical design with apparent seismic safety factors well-bellow 1", Soil Dyn. Earthq. Eng., 57, 37-45. https://doi.org/10.1016/j.soildyn.2013.10.002.   DOI
13 Gazetas, G., Anastasopoulos, I., Adamidis, O. and Kontoroupi, T. (2013), "Nonlinear rocking stiffness of foundations", Soil Dyn. Earthq. Eng., 47, 83-91. https://doi.org/10.1016/j.soildyn.2012.12.011.   DOI
14 Ha, J.G., Lee, S.H., Kim, D.S. and Choo, Y.W. (2014), "Simulation of soil-foundation-structure interaction of Hualien large-scale seismic test using dynamic centrifuge test", Soil Dyn. Earthq. Eng., 61(Supplement C), 176-187. https://doi.org/10.1016/j.soildyn.2014.01.008.
15 Kobori, T., Minai, R. and Kusakabe, K. (1973), "Dynamical characteristics of soil-structure cross-interaction system", Depart. Bull. Paper, 22(02), 111-151
16 Kim, D.K., Lee, S.H., Kim, D.S., Choo, Y.W. and Park, H.G. (2015), "Rocking effect of a mat foundation on the earthquake response of structures", J. Geotech. Geoenviron. Eng., 141(1), 04014085. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001207.   DOI
17 Kitada, Y., Hirotani, T. and Iguchi, M. (1999), "Models test on dynamic structure-structure interaction of nuclear power plant buildings", Nucl. Eng. Des., 192(2), 205-216. https://doi.org/10.1016/S0029-5493(99)00109-0.   DOI
18 Gajan, S. and Kutter, B.L. (2009a), "Contact interface model for shallow foundations subjected to combined cyclic loading", J. Geotech. Geoenviron. Eng., 135(3), 407-419. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(407).   DOI
19 Knappett, J.A., Madden, P. and Caucis, K. (2015), "Seismic structure-soil-structure interaction between pairs of adjacent building structures", Geotechnique, 65(5), 429-441. https://doi.org/10.1680/geot.SIP.14.P.059.   DOI
20 Ko, K.W., Ha, J.G., Park, H.J. and Kim, D.S. (2018), "Soil-rounding effect on embedded rocking foundation via horizontal slow cyclic tests", J. Geotech. Geoenviron. Eng., 144(3), 04018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001848.   DOI
21 Kwon, M.H. (2012), "Contact interface fiber section element: Shallow foundation modeling", Geomech. Eng., 4(3), 173-190. https://doi.org/10.12989/gae.2012.4.3.173   DOI
22 Lee, S.H., Choo, Y.W. and Kim, D.S. (2013), "Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 44(Supplement C), 102-114. https://doi.org/10.1016/j.soildyn.2012.09.008.   DOI
23 Meyerhof, G.G. (1951), "The ultimate bearing capacity of foundations", Geotechnique, 2(4), 301-332 https://doi.org/10.1680/geot.1951.2.4.301.   DOI
24 Lee, T.H. and Wesley, D.A. (1973), "Soil-structure interaction of nuclear reactor structures considering through-soil coupling between adjacent structures", Nucl. Eng. Des., 24(3), 374-387. https://doi.org/10.1016/0029-5493(73)90007-1.   DOI
25 Lou, M., Wang, H., Chen, X. and Zhai, Y. (2011), "Structure-soil-structure interaction: Literature review", Soil Dyn. Earthq. Eng., 31(12), 1724-173. https://doi.org/10.1016/j.soildyn.2011.07.008.   DOI
26 Mason, H.B., Trombetta, N.W., Chen, Z., Bray, J.D., Hutchinson, T.C. and Kutter, B.L. (2013), "Seismic soil-foundation- structure interaction observed in geotechnical centrifuge experiments", Soil Dyn. Earthq. Eng., 48(Supplement C), 162-174. https://doi.org/10.1016/j.soildyn.2013.01.014.   DOI
27 Schofield, A.N. (1980), "Cambridge geotechnical centrifuge operations", Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227.   DOI
28 Ogut, O.C. (2017). "Soil-structure interaction effect of embedded foundation and adjacent buildings on response characteristics of superstructures", Ph.D. Thesis, Nagoya University, Nagoya, Japan.
29 Padron, L.A., Aznarez, J.J. and Maeso, O. (2009), "Dynamic structure-soil-structure interaction between nearby piled buildings under seismic excitation by BEM-FEM model", Soil Dyn. Earthq. Eng., 29(6), 1084-1096. https://doi.org/10.1016/j.soildyn.2009.01.001.   DOI
30 Park, H.J., Ha, J.G., Kwon, S.Y., Lee, M.G. and Kim, D.S. (2017), "Investigation of the dynamic behaviour of a storage tank with different foundation types focusing on the soil-foundation-structure interactions using centrifuge model tests", Earthq. Eng. Struct. Dyn., 46(14), 2301-2316. https://doi.org/doi:10.1002/eqe.2905.   DOI
31 Welch, P. (1967), "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE T. Audio Electroacous., 15(2), 70-73.   DOI
32 Seong, J.T., Ha, J.G., Kim, J.H., Park, H.J. and Kim, D.S. (2017), "Centrifuge modeling to evaluate natural frequency and seismic behavior of offshore wind turbine considering SFSI", Wind Energy, 20(10), 1787-1800. https://doi.org/10.1002/we.2127.   DOI
33 Trombetta, N.W., Mason, H.B., Chen, Z., Hutchinson, T.C., Bray, J.D. and Kutter, B.L. (2013), "Nonlinear dynamic foundation and frame structure response observed in geotechnical centrifuge experiments", Soil Dyn. Earthq. Eng., 50, 117-133. https://doi.org/10.1016/j.soildyn.2013.02.010.   DOI
34 Trombetta, N.W., Mason, H.B., Hutchinson, T.C., Zupan, J.D., Bray, J.D. and Kutter, B.L. (2014). "Nonlinear soil-foundation- structure and structure-soil-structure interaction: centrifuge test observations", J. Geotech. Geoenviron. Eng., 140(5), 04013057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001074.   DOI
35 Aldaikh, H., Alexander, N. A., Ibraim, E. and Knappett, J. (2016), "Shake table testing of the dynamic interaction between two and three adjacent buildings (SSSI)", Soil Dyn. Earthq. Eng., 89, 219-232. https://doi.org/10.1016/j.soildyn.2016.08.012.   DOI
36 Xu, J., Costantino, C., Hofmayer, C. and Ali, S. (2004), "Seismic response prediction of NUPEC's field model tests of NPP structures with adjacent building effect", Proceedings of the ASME/JSME 2004 Pressure Vessels and Piping Conference, San Diego, California, U.S.A.
37 Beards, C.F. (1996), Structural Vibration: Analysis and Damping, Arnold, London, U.K.
38 FEMA (2005), "Improvement of nonlinear static seismic analysis procedures", FEMA 440, prepared by Applied Technology Council (ATC-55 Project).
39 Aldaikh, H., Alexander Nicholas, A., Ibraim, E. and Knappett Jonathan, A. (2018), "Evaluation of rocking and coupling rotational linear stiffness coefficients of adjacent foundations", Int. J. Geomech., 18(1), 04017131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001041.   DOI
40 Aldaikh, H., Alexander, N. A., Ibraim, E. and Oddbjornsson, O. (2015), "Two dimensional numerical and experimental models for the study of structure-soil-structure interaction involving three buildings", Comput. Struct., 150(Supplement C), 79-91. https://doi.org/10.1016/j.compstruc.2015.01.003   DOI
41 Alexander, N. A., Ibraim, E. and Aldaikh, H. (2013), "A simple discrete model for interaction of adjacent buildings during earthquakes", Comput. Struct., 124, 1-10. https://doi.org/10.1016/j.compstruc.2012.11.012.   DOI
42 Anastasopoulos, I., Kourkoulis, R., Gelagoti, F. and Papadopoulos, E. (2012), "Rocking response of SDOF systems on shallow improved sand: An experimental study", Soil Dyn. Earthq. Eng., 40, 15-33. https://doi.org/10.1016/j.soildyn.2012.04.006.   DOI