• Title/Summary/Keyword: homogeneous deformation

Search Result 185, Processing Time 0.026 seconds

An Analysis of Backward Extrusion Process with Torsion (비틀림을 이용한 후방압출 공정의 해석)

  • 허진혁;김영호;박재훈;진영은;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.846-849
    • /
    • 2000
  • In this paper backward extrusion process with lower die rotation was studied to improve the conventional backward extrusion problems ; requirement of large forming machine, the difficulty to selecting of die material caused by high surface pressure, high cost of forming machine caused by improvement of noise and vibration, and etc. In this experiment, model material, plasticine, was used of specimen. The result values of torsional and conventional backward extrusions were analyzed and compared. FE-simulation is used for analysis with DEFPRM-3D. These results show that the torsional backward extrusion is very useful process because this process can obtain the homogeneous deformation, low forming load. Decreasing forming load improves die life and makes it possible to use press of relatively low capacity. Also this process can reduce corner cavity, improve the initial cast-structure, owing to the high deformation and uniform starin distribution.

  • PDF

Electro-elastic analysis of functionally graded piezoelectric variable thickness rotating disk under thermal environment

  • Arefi, Mohammad;Moghaddam, Sina Kiani
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • In this study we derive the governing equations of a functionally graded piezoelectric disk, subjected to thermo-electro-mechanical loads. First order shear deformation theory is used for description of displacement field. Principles of minimum potential energy is used to derive governing equations in terms of components of the displacement field and the electric potential. The governing equations are derived for a disk with variable thickness. The numerical results are presented in terms of important parameters of the problem such as profile of variable thickness, in-homogeneous index and other related parameters.

Stress Analysis of a Layered Semi-infinite Solid Subjected to Contact Loading Using a Fourier Integral (층이 있는 반무한체의 접촉하중에 의한 응력을 푸리에 적분을 이용한 해석)

  • 안유민;박상신
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.373-379
    • /
    • 2001
  • The problem of interest is formulating elastic contact problem of a layered semi-infinite solid in terms of Fourier integral. The plane strain problem is considered for a solid composed of homogeneous isotropic two layers with different mechanical properties. General solutions for the subsurface stress and deformation field of frictionless elastic bodies under normal loading using of Fourier transformation technique are obtained. The numerical results for the stress distribution of coated solid for some particular cases are given.

Development of Forging Parts for Solar Electrode Body Using Oxygen-Free Copper Material (무산소동 소재를 활용한 태양광 일렉트로드 바디 단조 부품 개발)

  • Park, Dong-Hwan;Tak, Yun-Hak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.28-35
    • /
    • 2016
  • Forging operations are non-stationary processes occurring because of indirect pressure, generally, under conditions of three-dimensional stress and deformation. Furthermore, due to friction and the constraints of die geometry, deformation is not homogeneous. Material flow and deformation are largely determined by the shape of the tools. It is well known that net-shape forging can improve the mechanical strength of the final product as well as reduce material waste. Oxygen-free copper that is used for electrical and electronic components has excellent electrical and thermal conductivity. Oxygen-free copper parts have a low productivity in cutting process. Thus, the forging process is performed in order to improve the low productivity in cutting process. The forging of oxygen-free copper for electrode body parts was modeled using finite element simulation and forging experiments that were conducted for producing electrode body parts at room temperature. In order to reduce the cost of cutting products, the forging was performed in a closed cavity to obtain near-net or net-shape parts.

Development and Characteristics of Anorthite-Based Traditional Ceramic Materials to Suppress Sintering Deformation

  • Choi, JungHoon;Kim, UngSoo;Cho, WooSeok
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • An anorthite-based traditional ceramic was developed by adding secondary flux materials to a mixture of kaolin and $CaCO_3$ in order to minimize the deformation during the sintering process. Three flux materials, feldspar, talc, and frit, were evaluated by comparison with two commercial chinaware bodies. Anorthite body with glass frit exhibited poor firing shrinkage. Poor mechanical properties (modulus of rupture, MOR < 30 MPa) was observed for the bodies with feldspar. Another anorthite body was formulated with wollastonite as a Ca source. The fired body showed a MOR of 81 MPa and a shrinkage rate of 6% when wollastonite was added up to 50%. In the XRD analysis, the phase ratio between anorthite and quartz was the highest in the specimen with 50% wollastonite addition. Homogeneous and relatively small closed pores were observed in the microstructural analysis. These results suggest that a ceramic body formulated with 50% kaolin and 50% wollastonite can be fired at $1200^{\circ}C$ with a 6% firing shrinkage rate, giving rise to minimal sintering deformation.

Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation

  • Barka, Merbouha;Benrahou, Kouider Halim;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.91-112
    • /
    • 2016
  • In this paper, post-buckling behavior of sandwich plates with functionally graded (FG) face sheets under uniform temperature rise loading is examined based on both sinusoidal shear deformation theory and stress function. It is supposed that the sandwich plate is in contact with an elastic foundation during deformation, which acts in both compression and tension. Thermo-elastic non-homogeneous properties of FG layers change smoothly by the variation of power law within the thickness, and temperature dependency of material constituents is considered in the formulation. In the present development, Von Karman nonlinearity and initial geometrical imperfection of sandwich plate are also taken into account. By employing Galerkin method, analytical solutions of thermal buckling and post-buckling equilibrium paths for simply supported plates are determined. Numerical examples presented in the present study discuss the effects of gradient index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation parameters.

Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory

  • Loghman, Abbas;Faegh, Reza K.;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.533-547
    • /
    • 2018
  • In this paper the time-dependent creep analysis of a thick-walled FG cylinder with finite length subjected to axisymmetric mechanical and thermal loads are presented. First order shear deformation theory (FSDT) is used for description of displacement components. Inner and outer temperatures and outer pressure are considered as thermo-mechanical loadings. Both thermal and mechanical loadings are assumed variable along the axial direction using the sinusoidal distribution. To find temperature distribution, two dimensional heat transfer equation is solved using the required boundary conditions. The energy method and Euler equations are employed to reach final governing equations of the cylinder. After determination of elastic stresses and strains, the creep analysis can be performed based on the Yang method. The results of this research indicate that the boundaries have important effects on the responses of the cylinder. The effect of important parameters of this analysis such as variable loading, non-homogeneous index of functionally graded materials and time of creep is studied on the behaviors of the cylinder.

Effects of Clearance on the Formation of Adiabatic Shear Band in Stepped Specimen (계단시편의 간극이 단열전단밴드의 형성에 미치는 영향)

  • Yoo, Y.H.;Jeon, G.Y.;Chung, D.T.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1700-1709
    • /
    • 1993
  • The stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element method. Three different clearance sizes are tested. The material model for the stepped specimen includes effects of strain hardening, strain rate hardening and thermal softening. It is found that the material inside the fully grown adiabatic shear band experiences three phase of deformation, (1) homogeneous deformation phase, (2) initiation/incubation phase, and (3) fast growth phase. The second phase of deformation is initiated after sudden shear stress drop which occurs at the same time regardless of the clearance size. The incubation time prior to fast growth phase increases, as the clearance size of the stepped specimen increases. Whereas, after incubation period, the growth rate of the adiabatic shear band decreases, as the clearance size decreases. It is also found that two adiabatic shear band may develop instead of one for the smaller clearance size.

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소해석)

  • 황재호;고대철;민규식;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF