• Title/Summary/Keyword: homo polymer

Search Result 73, Processing Time 0.021 seconds

A research of thermoplastic elastomer PP(Poly Propylene)/SEBS(Styrene Ethylene Butylene Styrene) blends (열가소성 탄성중합체인 PP/SEBS 혼합 연구)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.562-570
    • /
    • 2018
  • New physical properties of polymer materials were obtained by blending two or three different type of polymers. TPE is used widely in the display, automotive and electronics industries. Consumers have sought emotionally more sensitive and advanced interior automotive parts. A polymer with high foamibility (Ed note: Please check this.) and flowability would be more plausible. TPE composed of foam is a good polymer material to satisfy these trends. In this research, two different TPE were tested, focusing on foamibility and flowability. Two type of TPE were prepared. The first was blended Homo-PP, oil and SEBS. The second was Co-PP, oil and SEBS. The blending temperatures were $180^{\circ}C$, $190^{\circ}C$, and $260^{\circ}C$(second one). The blending speed was 50rpm and blending time was 5 min. The MI of the blended material was affected by the MI of PP and not affected by the blending temperature. The hardness and tensile elasticity were less affected by the MI of PP and blending temperature. The hardness and tensile elasticity were lower at a higher SEBS/Oil content ratio. The soft touch feel was higher with high SEBS/Oil contents. The IPN (Interpenentration polymer network) structure was observed by dissolving the SEBS/Oil layer in xylene. Strain-hardening phenomena also was observed. TPE behaves in a rubber and foamed closed-cell improved its stability.

Copolymers of p-acryloyloxyacetophenone (AcAP) with MMA: Synthesis, Characterization and their Antifouling (AF) Efficiency

  • Elango, S.;Sidharthan, M.;Viswanadh, G.S.;Cho, Ji-Young;Park, N.S.;Shin, H.W.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.379-379
    • /
    • 2006
  • AcAP was prepared by reacting p-hydroxyacetophenone (HAP) with acryloyl chloride (Ac) in presence of triethylamine (TEA) in MEK at $0^{\circ}C$. The reaction was monitored by TLC and the prepared monomer was characterized by UV, IR, $^{1}H-NMR\;and\;GC-MS$. The homo- [poly (AcAP)] and copolymers [poly (AcAP-co-MMA)] were prepared by solution polymerization at $70^{\circ}C$, in which BPO as initiator. The molecular weight of the polymers was determined by GPC. In order to find out the AF activity of prepared polymers, representatives of marine microfoulers, shipfouling bacteria (B. macroides & P. aeruginosa) and microalgae (A. coffeaeformis & N. incerta) were screened. The results of antibacterial activity and diatom attachment assays revealed potential AF efficiency of these polymers.

  • PDF

Chemically Induced High Pretilt Angle by CN-Containing Polyimide

  • Lee, Myong-Hoon;You, Kwon-Il;Lee, Chang-Jin;Woo, Tae-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.191-192
    • /
    • 2000
  • New copolyimides containing nitrile side group were synthesized from copolymerization of pyromellitic dianhydride, m-phenylene diamine and 3,5-diaminobenzonitrile and subsequent thermal imidization of the resulting poly(amic acid). Crystallinity, glass transition temperature and initial decomposition temperature of copolyimides were almost identical to those of homo polyimide prepared from PMDA and m-PDA. Change of pretilt angle induced by the orientation layer of resulting copolyimide was investigated by using a nitrile-containg nematic liquid crystal cell after rubbing. As the content of polar nitrile group was increased in the copolymer, pretilt angle was increased from $3.65^{\circ}$ to $6.49^{\circ}$. The mechanism of this was speculated as the dipolar interaction between the liquid crystal and nitrile groups in copolyimide.

  • PDF

Effect of ligand orientation on hepatocyte attachment onto the poly(N-p-vinyl benzyl-o-$\beta$-D-galactopyranosyl-D-gluconamide)

  • Jo, Jong-Su;Goto, M.;Kobayashi, A.;Kobayashi, K.;Akaike, T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.123-125
    • /
    • 1996
  • The orientation effect of galactose ligand on hepatocyte attachment was investigated. Poly(N-p-vinyl benzyl-o-${\beta}$-D-galactopyranosyl-D-gluconamide) (PVLA), a ${\beta}$-galactose-carrying styrene homo-polymer, was used as a model ligand for the asialoglycoprotein receptors on hepatocytes. PYVA was transferred onto the poly(${\gamma}$-benzyl L-glutamate)(PBLG) or PBLG/ poly(ethylene glycol)(PEG)/PBLG Langmuir-Blodgett (LB) films as the monolayer level. The dichroic fluorescence values of confocal microscope indicated that the PVLA transferred onto the LB films was located with a preferential orientation of its molecular axes with regard to the direction of the a-helix of polypeptide. Hepatocyte recognized well-oriented galactose moieties of the surface of PVLA through asialoglycoprotein receptors.

  • PDF

Synthesis and Characterization of Electroluminescent Conjugated Polymers Containing Sulfone Group in the Main Chain (주사슬에 설폰기를 함유하는 전기발광 공액 고분자의 합성과 특성분석)

  • Kang Min Sung;Jung Ho Kuk;Park Soo Young;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • As a new class of electroluminescent (EL) polymers, PPV-based polymers containing sulfone group in the main chain were synthesized through Witting polymerization reaction to control n-conjugation length and energy levels for predictable light emission and enhanced device performance. These EL polymers showed good solubility in common organic solvents and high thermal stability with initial decomposition temperature of ca. $400^{circ}$ and glass transition temperature around $200^{circ}C$ Emission colors were tuned from green to deep blue by reducing ${\pi}$-conjugated length between sulfone groups. It was also noted from the cyclic voltammetry (CV) measurements and semiempirical calculations that sulfone group with high electron affinity effectively lowered HOMO-LUMO energy levels to enhance EL device performance.

Synthesis and Photovoltaic Properties of Copolymer Containing Fused Donor and Difluoroquinoxaline Moieties

  • Song, Suhee;Choi, Hyo Il;Shin, In Soo;Hyun, Myung Ho;Suh, Hongsuk;Park, Seong Soo;Park, Sung Heum;Jin, Youngeup
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2963-2968
    • /
    • 2014
  • We report synthesis and photovoltaic properties of two new conjugated copolymers, PCPDTQxF and PDTSQxF, with 6,7-difluoro-2,3-dihexylquinoxaline unit prepared by Stille coupling reaction. The advantage of 6,7-difluoro-2,3-dihexylquinoxaline based copolymer are high PCEs due to lower HOMO energy level, long wavelength absorption and high hole mobility. The solid films of PCPDTQxF and PDTSQxF showed absorption bands with maximum peaks at about 623 and 493 nm and the absorption onsets at 711 and 635 nm, corresponding to band gaps of 1.74 and 1.95 eV, respectively. The oxidation onsets of the PCPDTQxF and PDTSQxF polymers were estimated to be 0.68 and 0.95 V, which correspond to HOMO energy levels of -5.48 and -5.75 eV, respectively. The PDTSQxF has lower HOMO energy level as compared to PCPDTQxF to lead higher $V_{OC}$ value. The device comprising PCPDTQxF:PCBM (1:2) dissolved to a concentration of 1 wt % in ODCB showed $V_{OC}$ value of 0.62 V, $J_{SC}$ value of $1.14mA/cm^2$, and FF of 0.35, which yielded PCE of 0.25%.

Electronic Properties and Conformation of$\pi$-Conjugated Molecules with Phenyl and Heterocyclic Group

  • Eunho Oh;Kim, Cheol-Ju
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.67-71
    • /
    • 2000
  • A quantum-chemical investigation on the conformations and electronic properties of trans(diphenyl-diheterocyclic) ethenes(t-PHEs) as building block for fully $\pi$-conjuated polymer are performed in order to display the effects of heterocyclic ring substitution. Structures for the molecules, t-PHEs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF methods, with 6-31G basic set. The potential energy curves with respect to the change of single are obtained by using ab initio HF/6-31G basic set. The curves are not similar shapes in the molecules with respect to heterocyclic rings. It is shown that the steric repulsion interactions between phenyl ring and heterocyclic ring are subjected to different type with the respect to each heterocyclic ring. Electronic properties of the molecules were molecules were obtained by applying the optimized structures and selected geometries to the extended Huckel method. To investigate the change of HOMO-LUMO gap with respedt to the torsion angle, we select the optimized structures. By using the results, the dependency of conjugation for the energy gaps is analyzed. For t-PHE the energy gap increase up to 0.52 eV compared with its planar structure. In the cases of t-PHE and t-PHE, the energy gap increase by 1.29 and 1.15 eV, respectively, compared with its planar structure.

  • PDF

Improvement of Efficiency in $\pi$-Conjugated Polymer Based on Phenothiazine by Introduction of Oxadiazole Pendant as a Side Chain

  • Choi, Ji-Young;Lee, Bong;Kim, Joo-Hyun;Lee, Kye-Hwan
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.319-324
    • /
    • 2009
  • A new $\pi$-conjugated polymer, poly[(2-methoxy-(5-(2-(4-oxyphenyl)-5-phenyl-1,3,4-oxadiazole)-hexyloxy))-1,4-pheny1ene-1,2-etheny1ene-alt-(10-hexyl-3,7-phenothiazine )-1,2-ethenylene] (PTOXDPPV), was synthesized by the Heck coupling reaction. The electron transporting unit, conjugated 1,3,4-oxadiazo1e (OXD), is attached on the main chain via linear 1,6-hexamethylenedioxy chain. The band gap and photoluminescence (PL) maximum of PTOXDPPV are 2.35 eV and 565 nm, respectively. These values are very close to those of po1y[(2,5-didecyloxy-1,4-phenylene-1,2-etheny1ene )-alt-(l0-hexyl-3,7-phenothiazine)-1,2-ethenylene] (PTPPV), which does not have OXD pendant. The estimated HOMO energy level of PTOXDPPV was -4.98 eV, which is very close to that of PTPPV (-4.91 eV). The maximum wavelength of EL device based on PTOXDPPV and PTPPV appeared at 587 and 577 nm, respectively. In the PL and EL spectrum, the emission from OXD pendant was not observed. This indicates that the energy transfer from OXD pendants to main chain is occurred completely. The EL device based on PTOXD-PPV (ITO/PEDOT/PTOXDPPV/AI) has an efficiency of 0.033 cd/A, which is significantly higher than the device based on PTPPV (ITO/PEDOT/PTPPV/AI) ($4.28{\times}10^{-3}\;cd/A$). From the results, we confirm that the OXD pendants in PTOXDPPV facilitate hole-electron recombination processes in the emissive layer effectively.

Synthesis and Effect on t-Butyl PBD of the Blue Light Emitting Poly(phenyl-9,9-dioctyl-9',9'-dihexanenitrile) fluorene

  • Kim Byong-Su;Kim Chung-Gi;Oh Jea-Jin;Kim Min-Sook;Kim Gi-Won;Park Dong-Kyu;Woo Hyung-Suk
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.343-347
    • /
    • 2006
  • A novel, blue light-emitting polymer, poly(phenyl-9,9-dioctyl-9',9'dihexanenitrile)fluorene (PPFC6N), containing an alkyl and cyano group in the side chain, was synthesized by Suzuki polymerization and characterized. The polymer structure was confirmed by $^1H-NMR$. The number average molecular weight and the weight average molecular weight of the obtained polymer were 9,725 and 9,943 respectively. The resulting polymer was thermally stable with a glass transition temperature ($T_g$) of $93^{\circ}C$, and was easily soluble in common organic solvents such as THF, toluene, chlorobenzene and chloroform. The HOMO and LUMO energy levels of the polymer were revealed as 5.8 and 2.88 eV by cyclic voltammetry study, respectively. The ITO/PEDOT:PSS (40 nm)/PPFC6N (80 m)/LiF (1 nm)/Al (150 nm) device fabricated from the polymer emitted a PL spectrum at 450 nm and showed a real blue emission for pure PPFC6N in the EL spectrum. When t-butyl PBD was introduced as a hole blocking layer, the device performance was largely improved and the EL spectrum was slightly shifted toward deep blue. The device with PPFC6N containing t-butyl PBD layer showed the maximum luminance of 3,200 $cd/m^2$ at 9.5 V with a turnon voltage of 7 V.

Homopolymer Distribution in Polystyrene - Poly(methyl methacrylate) Diblock Copolymer (폴리스티렌-폴리(메틸 메타크릴레이트) 이종 블록 공중합체 내의 단일중합체 분포)

  • Hong, Sung-Ho;Lee, Eun-Ji;Song, Kwon-Bin;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Homopolymer distribution in block copolymer/homopolymer blends was investigated as a function of homopolymer concentration and homopolymer molecular weight. The deuterated poly(methyl methacrylate) or polystyrene was blended with a deuterated polystyrene-poly(methyl methacrylate) diblock copolymer up to a concentration of 20 wt%. Samples were characterized by small-angle X-ray scattering (SAXS), neutron reflectivity and transmission electron microscopy. The block copolymer with a thin-film geometry formed alternating lamellar microdomains oriented parallel to the substrate surface. By adding the homopolymer, the microdomain structure was significantly disturbed. As a consequence, a poorly ordered morphology appeared when the homopolymer concentration exceeded 15 wt%. Increasing the homopolymer concentration and/or the homopolymer molecular weight caused the microdomains to swell less uniformly, resulting in segregation of the homopolymer toward the middle of the microdomains.