• Title/Summary/Keyword: holonomy displacement

Search Result 3, Processing Time 0.014 seconds

INFINITESIMAL HOLONOMY ISOMETRIES AND THE CONTINUITY OF HOLONOMY DISPLACEMENTS

  • Byun, Taechang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.365-374
    • /
    • 2020
  • Given a noncompact semisimple Lie group G and its maximal compact Lie subgroup K such that the right multiplication of each element in K gives an isometry on G, consider a principal bundle G → G/K, which is a Riemannian submersion. We study the infinitesimal holonomy isometries. Given a closed curve at eK in the base space G/K, consider the holonomy displacement of e by the horizontal lifting of the curve. We prove that the correspondence is continuous.

HOLONOMY DISPLACEMENTS IN THE HOPF BUNDLES OVER $\mathcal{C}$Hn AND THE COMPLEX HEISENBERG GROUPS

  • Choi, Young-Gi;Lee, Kyung-Bai
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.733-743
    • /
    • 2012
  • For the "Hopf bundle" $S^1{\rightarrow}S^{2n,1}{\rightarrow}\mathbb{C}H^n$, horizontal lifts of simple closed curves are studied. Let ${\gamma}$ be a piecewise smooth, simple closed curve on a complete totally geodesic surface $S$ in the base space. Then the holonomy displacement along ${\gamma}$ is given by $$V({\gamma})=e^{{\lambda}A({\gamma})i}$$ where $A({\gamma})$ is the area of the region on the surface $S$ surrounded by ${\gamma}$; ${\lambda}=1/2$ or 0 depending on whether $S$ is a complex submanifold or not. We also carry out a similar investigation for the complex Heisenberg group $\mathbb{R}{\rightarrow}\mathcal{H}^{2n+1}{\rightarrow}\mathbb{C}^n$.

RIEMANNIAN SUBMERSIONS OF SO0(2, 1)

  • Byun, Taechang
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1407-1419
    • /
    • 2021
  • The Iwasawa decomposition NAK of the Lie group G = SO0(2, 1) with a left invariant metric produces Riemannian submersions G → N\G, G → A\G, G → K\G, and G → NA\G. For each of these, we calculate the curvature of the base space and the lifting of a simple closed curve to the total space G. Especially in the first case, the base space has a constant curvature 0; the holonomy displacement along a (null-homotopic) simple closed curve in the base space is determined only by the Euclidean area of the region surrounded by the curve.