• Title/Summary/Keyword: hollow spheres

Search Result 49, Processing Time 0.031 seconds

Assembly Sequence Determination from Design Data Using Voxelization (복셀화를 통한 디자인 데이타로부터의 조립순서 결정)

  • Lee, Changho;Cho, Hyunbo;Jung, Mooyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.90-101
    • /
    • 1996
  • Determination of assembly sequence of components is a key issue in assembly operation. Although a number of articles dealing with assembly sequence determination have appeared, an efficient and general methodology for complex products has yet to appear. The objective of this paper is to present the problems and models used to generate assembly sequence from design data. An essential idea of this research is to acquire a finite number of voxels from any complex geometric entity, such as 3D planar polygons, hollow spheres, cylinders. cones, tori, etc. In order to find a feasible assembly sequence, the following four steps are needed: (1) The components composing of an assembly product are identified and then the geometric entities of each component are extracted. (2) The geometric entities extracted in the first step are translated into a number of voxels. (3) All the mating or coupling relations between components are found by considering relations between voxels. (4) The components to be disassembled are determined using CCGs (Component Coupling Graph).

  • PDF

Electrochemical Performance as the Positive Electrode of Polyaniline and Polypyrrole Hollow Sphere with Different Shell Thickness (껍질 두께가 다른 폴리아닐린과 폴리피롤 속 빈 구형체 양전극의 전기화학적 성능)

  • Yun, Su-Ryeon;Hwang, Seung-Gi;Cho, Sung-Woo;Kang, Yongku;Ryu, Kawng-Sun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • Polyaniline (PANI) and polypyrrole (Ppy) hollow sphere structures with controlled shell thicknesses can be easily synthesized than those of using a layer-by-layer method for cathode active material of lithium-ion batteries. Polystyrene (PS) core was synthesized by emulsion polymerization using an anion surfactant. The shell thicknesses of PANI and Ppy were controlled by amounts of aniline and pyrrole monomers. PS was removed by an organic solution. This structure increased in contact with an electrolyte and a specific capacity in lithium-ion batteries. But polymers have disadvantages such as the difficult control of molecular weights and low densities. These disadvantages were completed by controlled shell thicknesses. The amount of aniline monomer increased from 1.2, 2.4, 3.6, 4.8 to 6.0 mL, and the shell thicknesses were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, respectively. And the amount of pyrrole monomer was 0.6, 1.2, 2.4 and 3.6 mL, the shell thicknesses were 16.0, 22.0, 27.0 and 34.0 nm, respectively. In the cathode materials with controlled shell thicknesses, shell thicknesses of the PANI hollow spheres were 30.2, 42.2, and 52.4 nm, and discharge specific capacities of after 10 cycle were ~18, ~29, and ~62 mAh/g, respectively. The shell thicknesses of the Ppy hollow spheres were 16.0, 22.0, 27.0 and 34.0 nm, and discharge specific capacities of after 15 cycle were ~15, ~36, ~56, and ~77 mAh/g, respectively. Thus, shell thicknesses of PANI and Ppy increased, the specific capacities increased.

Microstructural changes of polyacrylonitrile-based carbon fibers (T300 and T700) due to isothermal oxidation (1): focusing on morphological changes using scanning electron microscopy

  • Oh, Seong-Moon;Lee, Sang-Min;Kang, Dong-Su;Roh, Jae-Seung
    • Carbon letters
    • /
    • v.18
    • /
    • pp.18-23
    • /
    • 2016
  • Polyacrylonitrile (PAN)-based carbon fibers have high specific strength, elastic modulus, thermal resistance, and thermal conductivity. Due to these properties, they have been increasingly widely used in various spheres including leisure, aviation, aerospace, military, and energy applications. However, if exposed to air at high temperatures, they are oxidized, thus weakening the properties of carbon fibers and carbon composite materials. As such, it is important to understand the oxidation reactions of carbon fibers, which are often used as a reinforcement for composite materials. PAN-based carbon fibers T300 and T700 were isothermally oxidized in air, and microstructural changes caused by oxidation reactions were examined. The results showed a decrease in the rate of oxidation with increasing burn-off for both T300 and T700 fibers. The rate of oxidation of T300 fibers was two times faster than that of T700 fibers. The diameter of T700 fibers decreased linearly with increasing burn-off. The diameter of T300 also decreased with increasing burn-off but at slower rates over time. Cross-sectional observations after oxidation reactions revealed hollow cores in the longitudinal direction for both T300 and T700 fibers. The formation of hollow cores after oxidation can be traced to differences in the fabrication process such as the starting material and final heat treatment temperature.

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

Development of New Reverse Micellar Microencapsulation Technique to Load Water-Soluble Drug into PLGA Microspheres

  • Kim Hyun Joo;Cho Mi Hyun;Sah Hong Kee
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.370-375
    • /
    • 2005
  • The objective of this study was to develop a new reverse micelle-based microencapsulation technique to load tetracycline hydrochloride into PLGA microspheres. To do so, a reverse micellar system was formulated to dissolve tetracycline hydrochloride and water in ethyl formate with the aid of cetyltrimethylammonium bromide. The resultant micellar solution was used to dissolve 0.3 to 0.75 g of PLGA, and microspheres were prepared following a modified solvent quenching technique. As a control experiment, the drug was encapsulated into PLGA microspheres via a conventional methylene chloride-based emulsion procedure. The micro­spheres were then characterized with regard to drug loading efficiency, their size distribution and morphology. The reverse micellar procedure led to the formation of free-flowing, spherical microspheres with the size mode of 88 ~m. When PLGA microspheres were prepared follow­ing the conventional methylene chloride-based procedure, most of tetracycline hydrochloride leached to the aqueous external phase: A maximal loading efficiency observed our experimental conditions was below $5\%$. Their surfaces had numerous pores, while their internal architecture was honey-combed. In sharp contrast, the new reverse micellar encapsulation technique permitted the attainment of a maximal loading efficiency of 63.19 $\pm$$0.64\%$. Also, the microspheres had smooth and pore-free surfaces, and hollow cavities were absent from their internal matrices. The results of this study demonstrated that PLGA microspheres could be successfully prepared following the new reverse micellar encapsulation technique.

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

Chemoenzymatic Synthesis of Dual-responsive Amphiphilic Block Copolymers and Drug Release Studies

  • Chen, Peng;Li, Ya-Peng;Wang, Shu-Wei;Meng, Xin-Lei;Zhu, Ming;Wang, Jing-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1800-1808
    • /
    • 2013
  • Dual-responsive amphiphilic block copolymers were synthesized by combining enzymatic ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (CL) and ATRP of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). The obtained block copolymers were characterized by gel permeation chromatography (GPC), $^1H$ NMR and FTIR-IR. The critical micelle concentration (CMC) of copolymer was determined by fluorescence spectra, it can be found that with hydrophilic block (PDMAEMA) increasing, CMC value of the polymer sample increased accordingly, and the CMC value was 0.012 mg/mL, 0.025 mg/mL and 0.037 mg/mL for $PCL_{50}$-b-$PDMAEMA_{68}$, $PCL_{50}$-b-$PDMAEMA_{89}$, $PCL_{50}$-b-$PDMAEMA_{112}$, $PCL_{50}$-b-$PDMAEMA_{89}$ was chosen as drug carrier to study in vitro release profile of anti-cancer drug (taxol). The temperature and pH dependence of the values of hydrodynamic diameter (Dh) of micelles, and self-assembly of the resulting block copolymers in water were evaluated by dynamic light scattering (DLS). The result showed that with the temperature increasing and pH decreasing, the Dh decreased. Drug-loaded nanoparticles were fabricated using paclitaxel as model. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) had been explored to study the morphology of the hollow micelles and the nanoparticles, revealing well-dispersed spheres with the average diameters both around 80 nm. In vitro release kinetics of paclitaxel from the nanoparticles was also investigated in different conditions (pH and temperature, etc.), revealing that the drug release was triggered by temperature changes upon the lower critical solution temperature (LCST) at pH 7.4, and at $37^{\circ}C$ by an increase of pH.

The historical study on the Ukrainian territorial conflicts: Focusing on the Crimean War and the German-Soviet War (우크라이나 영토분쟁에 관한 사(史)적 연구: 크림전쟁과 독소전쟁의 사례를 중심으로)

  • Eunchae Lee;Ikhyun Jang
    • Analyses & Alternatives
    • /
    • v.8 no.2
    • /
    • pp.65-86
    • /
    • 2024
  • This study delves into the geopolitical tensions surrounding Ukraine throughout modern European history, aiming to shed light on its significance in geopolitical discourse. Since the 19th century, European powers, particularly the Anglo-Saxons and Germans, have formulated distinct geopolitical strategies concerning the Eurasian continent, with Ukraine at its focal point. The Crimean War and the German-Soviet War serve as key events to analyze these powers' geopolitical ambitions and interests. The British Empire, driven by its doctrine of thwarting land powers with sea power, intervened in the Crimean War against Russia. Its objective was to disrupt Russian dominance over Ukraine, thereby hindering Russian expansion into the Black Sea and Central Europe. On the other hand, the Third Reich of Germany, fixated on creating a European sphere exclusive from Anglo-Saxon sea powers and the Russian land power, initiated the German-Soviet War. This move aimed to secure a vast territory, including Ukraine, to facilitate expansion into the Caucasus and establish a buffer zone against the Soviet Union. Three key insights emerge from this analysis. Firstly, the absence of a dominant power rooted in Ukraine since the fall of the Principality of Kiev made geopolitical clashes inevitable. Secondly, these clashes ultimately result in a hollow victory for all involved parties, signifying the high costs and minimal gains of such confrontations. Lastly, the root cause of these clashes lies in the discord between exclusive geopolitical visions that fail to accommodate sustainable coexistence among diverse geopolitical spheres. In essence, the study underscores Ukraine's pivotal role in shaping European geopolitics and highlights the recurring clashes driven by competing visions of dominance and control over its territory. From the Crimean War to the German-Soviet War, the struggle for influence over Ukraine reflects broader geopolitical dynamics and the pursuit of strategic advantage by major powers. Ultimately, the study emphasizes the enduring significance of Ukraine in European geopolitics and the complexities inherent in managing its geopolitical tensions.