• Title/Summary/Keyword: hole transport

Search Result 339, Processing Time 0.023 seconds

A Study on the Transference Mechanism of Charge carriers within the Devices (소자 내부에서 전하 운송체의 이동 메카니즘에 관한 연구)

  • Shim, Hye-Yeon;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.508-509
    • /
    • 2005
  • In case of ITO/MEH-PPV/Al structure, the quantity of charge carriers flowing through the organic material was few and the density of them is fixed. The electric field inside of the device almost didn't change with the position. On the other hands, in case of Au/MEH-PPV/Au structure, the hole density increased rapidly nearby the anode but decreased nearby the cathode. The space charge phenomenon followed sufficient hole injection resulted in the change of the electric field with the position inside of the device. We verified that the result of the current-voltage simulation corresponded with experimental result.

  • PDF

Electrical and Optical Properties of Partially Doped Blue Phosphorescent OLEOs (부분 도핑을 이용한 청색 인광 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.512-515
    • /
    • 2009
  • We have fabricated blue phosphorescent organic light emitting diodes (PHOLEDs) using a 3,5'-N,N'-dicarbazole-benzene (mCP) host and iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$] picolinate (Flrpic) guest materials, The Flrpic was partially doped into the mCP host layer, for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs. The recombination of electrons and holes takes place inside the mCP layer adjacent to the mCP/hole blocking layer interface. The best current efficiency was obtained in a device with an emission layer structure of mCP (10 nm)/mCP:Flrpic (20 nm, 10%). The high current efficiency in this device was attributed to the confinement of Ffrpic triplet excitons by the undoped mCP layer with high triplet energy, which blocks diffusion of Ffrpic excitons to the adjacent hole transport layer with a lower triplet energy.

Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer (PEDOT:PSS 정공 수송층에 금 나노입자를 첨가한 유기태양전지의 제작 및 특성 연구)

  • Kim, Seung Ho;Choi, Jae Young;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • In this paper, organic solar cells(OSCs) based on bulk-heterojunction structures were fabricated by spin coating method using polymer P3HT and fullerene PCBM as a photoactive layer. The fabricated OSCs had a simple glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structures. The photoactive layer of mixed P3HT:PCBM was formed with 1:1 weight ratio. The hole transport layer(HTL) was used conducting polymer PEDOT:PSS concentration with gold nanoparticles. The annealing temperature and concentration of nanoparticles in HTL were verified to improve the OSC characterization. The percentage of gold nanoparticles in HTL were 0.5 wt% and 1.0 wt%, and the surface morphology, electrical properties and absorption intensities were investigated. The devices were 0.5 wt%, and the highest 3.1% of the powder conversion efficiency(PCE), 10.2 $mA/cm^2$ of the maximum short circuit current density($J_{SC}$), 0.535V of the open circuit voltage($V_{OC}$) and 55.8% of the fill factor(F.F) could be obtained when the nanoparticle concertration was 0.5 wt%. The annealing temperature of HTL was $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$ in vacuum oven and measured the absorption intensities, surface morphology, crystallinity and electrical properties were investigated. The best property was obtained in HTL annealed at $130^{\circ}C$ for gold nanoparticles of 0.5 wt%, showing that $J_{SC}$, $V_{OC}$, F.F and PCE were about 12.0 $mA/cm^2$, 0.525V, 64.2% and 4.0%, respectively.

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer (CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Park, So-Hyun;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.

The recent trend of organic electroluminescent devices (유기 전계발광 소자의 최근의 개발동향)

  • 구할본;김주승;조재철
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.208-215
    • /
    • 1996
  • 본 고에서는 최근 주목받고 있는 적층형 유기 전계발광소자의 일반적 형태와 발광특성등에 대해 알아보고자 한다. 현재 완전한 유기 전계발광소자의 개발을 위해 캐리어 수송재 즉, 정공수송재와 전자수송계의 캐리어 수송능력을 증가시키기 위해서 여러가지 새로운 물질들이 연구되고 있으며, 고효율의 발광특성을 얻어내기 위한 발광재료의 개발과 동작시의 안정성을 향상시키기 위한 소자구조의 개선에 대해서도 연구가 국내외적으로 활발히 진행되고 있다. 특히, 조만간 일본에서 30cd/m$^{2}$의 휘도를 갖는 적층형 유기 전계발광 소자가 상용화 될것으로 알려져있어 이를 계기로 고휘도, 고효율의 유기 전계발광 소자의 개발이 가까운 시일내에 이루워지리라 전망된다.

  • PDF

Interrelation on the Electronic Structure and Spectroscopic-Photoeletric Characteristics in the Cyanine and Merocyanine Dye(II) (Cyanine 및 Merocyanine색소의 분광특성 및 광전특성에 대한 전자구조의 상관관계(II))

  • 손세모
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.13 no.2
    • /
    • pp.1-17
    • /
    • 1995
  • Organic thin film electroluminescene devices were fabricated using by molecularly doped method with N,N`-diphenyl-N,N`-bis(3-methylphenyl)-1,1`-biphenyl-4,4`-diamine(TPD) as a hole transport material, tris(8-quinolinolate) aluminium(III)(Alq3) as an emitting and electron transport agent, fluorescent squarylium(SQ) dye as a dopant, and poly(methylmethacrylate) as polymer materials. A cell structure of ITO/TPD-PMMA/Alq3-dopant/Mg was employed. The EL spectrum covers a wide range of the visible region and orange emission os observed. Two peaks at 520 and 660nm correspond to the emissions 620nm Alq3 and SQ dye, respectively.

  • PDF

Characteristics of blue organic EL devices as thickness ratio (청색 유기 EL 소자의 두께비에 따른 발광 특성)

  • 손철호;나선웅;여철호;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.648-651
    • /
    • 2001
  • We studied about luminance characteristics of blue organic electroluminecent device as thickness ratio. The device is fabricated TPD(N,N'-dyphenyl-N-N'-bis(3-methyphenyl) -1,1'-biphenyl-4,4'-diamine) as hole transport layer and Butyl -PBD(1,1,4,4-Tetraphenyl-1,3-butadiene) as emission layer and electron transport layer. Total thickness is 1000${\AA}$ as HTL and ETL, each devices has 500${\AA}$:500${\AA}$. 400${\AA}$:600${\AA}$ and 600${\AA}$:400${\AA}$ of TPD : Butyl-PBD. We obtained the maximum brightness about 175cd/㎡ 500${\AA}$: 500${\AA}$ thickness devices as HTL:ETL

  • PDF

Degradation effects of blue organic electroluminescence devices (청색 유기 EL 소자의 열화현상에 대한 연구)

  • Na, Sun-woong;Son, Chul-ho;Shin, Kyung;Lee, Young-jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.943-946
    • /
    • 2001
  • In this study, We have investigated degradation effects of blue organic electroluminescence devices that was consisted of TPD(N,N'-dyphenyl-N-N\`-bis(3-methyphenyl) as hole transport layer and Butyl-PBD (2- (4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole)-as emission layer and electron transport layer. We have studied characteristics of brightness and current density about blue OEL that was degradated layer. Two kinds of samples that were fabricated each continuous and non-continuous method was used.

  • PDF

Temperature-dependent current-voltage characteristics of Organic Light-Emitting Diodes (OLEDs) (유기 발광 소자의 온도에 따른 전압-전류 특성)

  • 이호식;정택균;김상걸;정동회;장경욱;이원재;김태완;이준웅;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1088-1091
    • /
    • 2001
  • Temperature-dependent current-voltage characteristics of Organic Light-Emitting Diodes(OLEDs) were studied. The OLEDs were based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1, 1'-diphenyl-4, 4'-diamine (TPD) as a hole transport and trim(8-hydroxyquinoline) alulninum(Alq$_3$) as an electron transport and emissive material. The current-voltage characteristics were measured in the temperature range of 10[K] and 300[K]. A conduction mechanism in OLEDs was interpreted in terms of tunneling and trap-filled limited current.

  • PDF

Preparation and Characteristics of Organic Electroluminescence Devices Using Multilayer structure with Carrier Transport Materials (다층막 구조를 이용한 유기 EL소자의 제작과 특성에 관한 연구)

  • 이상윤;김태완;최종선;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.249-252
    • /
    • 1997
  • Electroluminescence(EL) devices based on organic thin layers have attracted lot of interests because of their possible application as large-area display-emitting display. One of the problems of such devices is lifetime of the cell, where the degradation of the cell is partially due to the crystalliyzation of organic layers. In large part, this problem can be solved by using a multilayer device structure prepared by vapor deposition technique. In this study, blue light-emitting multilayer organic electroluminescence devices were fabricated vsing Poly (9-vinylcarbaEole) (PVK) and 2- (4-tert-butylphenyl)-5-(4$^{#}$-bis-phenyl) 1,3,4-oxadiazole (PBO) as hole trasport and electron transport material, respectively, where trim(8-hyd roxyquinolinate) aluminum (Al $q_3$) was used as a luminescenct material. A cell structure of glass sub- strate/indume-tin-oxide(ITO)/PCK/Al $q_3$/PBD/Mg:In was employed. Blue emission peak at 510nm was observed with this cell structure.e.

  • PDF