• 제목/요약/키워드: hole drilling

검색결과 389건 처리시간 0.033초

공업용 플라스틱 성형품에 대한 잔류응력의 측정 (Determination of Residual-Stress Distribution in Engineering Plastics)

  • 김채환;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.132-135
    • /
    • 2006
  • Injection molding is a flexible production technique for the manufacturing of polymer products, but introduces residual stresses. Residual stresses in a structural material or component are those stresses which exist in the object without other external loads. The layer removal and hole drilling method are used for the measurement of residual stress in injection molded polystyrene part. The hole drilling method is potentially more flexible for determining residual stress in complex geometries and can be used as an adoptable technique for the measurement of residual stress in polymeric materials. Results obtained by experiments agree with each other.

  • PDF

구멍뚫기법(HDM)에 의한 STS 304 용접부의 잔류응력 해석에 관한 연구 (A Study on the Analysis of Residual Stress of STS 304 Weldment Using Hole Drilling Method)

  • 고준빈;최원두;이영호
    • Journal of Welding and Joining
    • /
    • 제19권6호
    • /
    • pp.664-670
    • /
    • 2001
  • The HDM(Hole Drilling Method) is a relatively simple and accurate methods in measuring residual stress of weldment. Various method of evaluating residual stress are studied in welding field. The method of cutting holes on the plate much affects the accuracy of result. Especially for the hard material like stainless which is difficult to cut preciously is difficult to measure residual stress of weldment. Because heat conduction of strainless steel is lower than other general steel, the magnitude of residual stress might be different as to changing of welding conditions. Therefore, the distribution of residual stress on the STS304 steel after welding using HDM is evaluated in this paper.

  • PDF

용접부의 천공 측정법에 의한 잔류 응력에 관한 연구 (A Study on the Residual Stresses by the Hole Drilling Measuring in the WeldZone)

  • 남궁재관
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.115-121
    • /
    • 2008
  • A knowloedge of the residual stress distribution at circumferential welds can increase the prediction accuracy of a fracture assessment in pipe lines. In this study, in order to predict the residual stress distribution in the circumferential butt-welded pipes were measured, using the hole-drilling strain gauge method. Their practical applications were performed in to two kinds of pipes. As the results, the following characteristics were found. On the inner surface of pipes, the circumferential and axial residual stresses were both tensile near the center line of welding and both of them changed from tensile to compressive as the distance from the center line increased. On the outer surface, however, the circumferential residual stress was shown to be tensile wile the axial residual stress was compressive near the center line of welding, and later they were revered at the region far away from the centerline.

극세선용 압출다이의 미세구멍 가공기술 연구 (A study on the micro-hole machining for micro-extruding die)

  • 민승기;제태진;이응숙;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.202-205
    • /
    • 2002
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\Phi$ 50${\mu}{\textrm}{m}$ micro-drill which is coated with diamond is used for drilling of super micro-hole sues. For the machining of taper parts of entrance and exit, drill having $\Phi$ 9mm inclination angle 20$^{\circ}$ is used. This is useful for anti tool-breakage in drilling process. After micro-drilling, the polishing process by abrasive is carried out for increasing surface roughness.

  • PDF

HDM을 이용한 잔류응력측정과 압축·인장 잔류응력이 인가된 재료의 피로수명평가 (Fatigue Life Evaluation on Compressive & Tensional Residual Stress Induced Materials and Residual Stress Measurement using Hole Drilling Method)

  • 백승엽
    • Journal of Welding and Joining
    • /
    • 제31권2호
    • /
    • pp.43-48
    • /
    • 2013
  • This paper Investigated the characteristics of residual stress in weld is composed of typical specimens, are investigated by using three dimensional thermal elasto-plastic FEM analysis. Numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. Using the stress amplitude (${\sigma}a$)R at the hot spot point of gas weld, the relations obtained as the fatigue test results for typical specimens having various dimensions and shapes were systematically rearranged to obtain the (${\sigma}a$)R-Nf relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (${\sigma}a$)R.

피코초 레이저를 이용한 양극산화 알루미늄 미세 홀 가공의 실험적 연구 (Experimental study on micro-hole drilling of anodized aluminum using picosecond laser)

  • 오부국;방준호;김종기;임성묵;이승기;정수화;홍순국
    • 한국레이저가공학회지
    • /
    • 제17권2호
    • /
    • pp.5-10
    • /
    • 2014
  • Aluminum has been widely used in the electric applications because of light metals. When mechanical element is periodically moving with contacting other surfaces, the anodizing process for aluminum is useful for avoiding the abrasive damage. The anodized element has quietly different characteristics with respect to the distribution of hardness and crystal structure. In this work, the laser drilling of anodized surface is studied experimentally. Fusion drilling method - laser drilling with inert gas blowing - is used. The effect of various process parameters (gas pressure, laser power, focus position) is investigated with respect to the hole size and circularity.

  • PDF

공기 베어링 스핀들을 애용한 PCB 드릴링에 관한 연구 (A Study on the PCB(Printed Circuit Board) Drilling by Air Bearing Spindle)

  • 배명일;김상진;김기수
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.15-20
    • /
    • 2005
  • This paper describes the PCB drilling using an ultra high-speed air bearing spindle system and micro drill. For this research, we have developed the ultra high-speed air bearing spindle of 125,000 rpm and made an experiment for the application possibility in the PCB drilling. In order to estimate the drilling performance, we have investigated the size and damage of drilled hole, and the wear of drill at 90,000rpm. Results are as follows; we have confirmed the possibility in the PCB drilling of air bearing spindle. In case of micro-drilling PCB at $0.1mm\sim0.3mm$, the increase in the number of drilling has resulted in a bigger size of holes and also a bigger size of damage. It has been found that the wear of micro drill tends to concentrate in the main cutting edge.

인쇄회로기판의 미세 신호 연결 홀 형성을 위한 레이저 드릴링 시스템 (Laser Drilling System for Fabrication of Micro via Hole of PCB)

  • 조광우;박홍진
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.14-22
    • /
    • 2010
  • The most costly and time-consuming process in the fabrication of today's multi-layer circuit board is drilling interconnection holes between adjacent layers and via holes within a layer. Decreasing size of via holes being demanded and growing number of via holes per panel increase drilling costs. Component density and electronic functionality of today's multi-layer circuit boards can be improved with the introduction of cost-effective, variable depth laser drilled blind micro via holes, and interconnection holes. Laser technology is being quickly adopted into the circuit board industry but can be accelerated with the introduction of a true production laser drilling system. In order to get optimized condition for drilling to FPCB (Flexible Printed Circuit Board), we use various drill pattern as drill step. For productivity, we investigate drill path optimization method. And for the precise drilling the thermal drift of scanner and temperature change of scan system are tested.

Evaluation of delamination in the drilling of CFRP composites

  • Feroz, Shaik;Ramakrishna, Malkapuram;K. Chandra, Shekar;P. Dhaval, Varma
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.375-390
    • /
    • 2022
  • Carbon Fiber Reinforced Polymer (CFRP) composite provides outstanding mechanical capabilities and is therefore popular in the automotive and aerospace industries. Drilling is a common final production technique for composite laminates however, drilling high-strength composite laminates is extremely complex and challenging. The delamination of composites during the drilling at the entry and exit of the hole has a severe impact on the results of the holes surface and the material properties. The major goal of this research is to investigate contemporary industry solutions for drilling CFRP composites: enhanced edge geometries of cutting tools. This study examined the occurrence of delamination at the entry and exit of the hole during the drilling. For each of the 80°, 90°, and 118°point angle uncoated Brad point, Dagger, and Twist solid carbide drills, Taguchi design of experiments were undertaken. Cutting parameters included three variable cutting speeds (100-125-150 m/min) and feed rates (0.1-0.2-0.3 mm/rev). Brad point drills induced less delamination than dagger and twist drills, according to the research, and the best cutting parameters were found to be a combination of maximum cutting speed, minimum feed rate, and low drill point angle (V:150 m/min, f: 0.1 mm/rev, θ: 80°). The feed rate was determined to be the most efficient factor in preventing hole entry and exit delamination using analysis of variance (ANOVA). Regression analysis was used to create first-degree mathematical models for each cutting tool's entrance and exit delamination components. The results of optimization, mathematical modelling, and experimental tests are thought to be reasonably coherent based on the information obtained.