• Title/Summary/Keyword: hole 형상

Search Result 312, Processing Time 0.029 seconds

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

Nano Plasma Electrode by FIB and its application (FIB로 제작된 나노 플라즈마의 응용)

  • 박기완;이태일;백홍구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.487-489
    • /
    • 2004
  • 마이크로 사이즈 공음극 플라즈마 전극에 대한 제작 및 방전 실험을 진행하였다. 방전 전극은 200~500 um의 hole 형상을 제작하였으며 70~850 torr He 분위기에서 방전 실험하였다. 실험 샘플은 막힌 공음극 형상과, 관통된 공음극 두가지 형상을 실험하였다. 마이크로 공음극 플라즈마의 공음극 크기에 따른 결과에서 사이즈가 작을수록 총 전류 값은 낮아지나, 전류 밀도는 증가하였다. 막힌 공음극에서는 양저항 특성을, 관통된 공음극에서는 부저항 결과를 얻었다.

  • PDF

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.

A Study on the Lightweight Design of a Cross Beam for Railway Passenger Coach (철도객차용 크로스 빔의 경량화 설계에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.126-133
    • /
    • 2017
  • This report investigates the stress distribution according to the location and shape change of the circular hole for the lightweight design of the cross beam of a railway passenger car and studies the lightweight design. To design a lightweight cross beam with a circular hole, we selected the non-circular crossbeam as a basic model, examined the stress distribution and displacement by position and determined the location, shape, size and quantity of the hole for light weight. We analyzed the effects of the position and shape of the hole on the maximum equivalent stress and displacement. The influencing factors were set as the design parameters, and the stress value was examined according to the variation of each variable. By considering the stress value according to the change of each variable and selecting the design parameter with the narrowest scattering value of the stress at each position of the hollow cross beam with various hole positions and shapes, we studied a cross beam with a circle hole under identical load condition to have an equal stress distribution to that of a non-circular cross beam.

Hole pattern 형성에 따른 금속/PET sheet의 인장 시 저항변화

  • Choe, Yeong-Jun;Gwon, Na-Hyeon;Jo, Yeong-Rae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.37.1-37.1
    • /
    • 2009
  • 최근 휘어짐이 가능한 flexible display의 개발이 활발히 진행됨에 따라 OLED(organic light emitting diode)의 발전 가능성은 커지고 있다. 하지만 cathode 재료인 Cr, Al등은 tensile 또는 bending에 취약하다. 따라서 본 연구에서는, 인장시험용 아령모형의 PET($125\;{\mu}m$) 필름에 Al, Cr, Cr+Al을 각각 코팅하고 부분적으로 hole을 patterning함으로써 인장 시 미소크랙의 발생을 감소시켜 전기저항(R) 변화를 최소화하는 패턴형상을 design하고 세 가지 금속의 전기저항 변화를 통해 좀 더 우수한 flexible display용 금속을 찾는데 그 목적이 있다. 전극에 형성된 미세패턴의 영향과 패턴 된 hole size에 따른 전기저항의 변화를 알아보기 위해 hole size는 $50\;{\mu}m$, $30\;{\mu}m$, $10\;{\mu}m$로 제작하였고 각각의 금속막에 patterning하였다. 제작된 시편을 인장시험 장치에 설치 후 2mm/min의 속도로 인장응력을 가하면서 Load의 증가에 따른 금속막의 전기저항($\bigtriangleup$R)을 동시동작으로 측정하였다. 실험결과 인장시험 시 저항변화는 Cr이 짧은 시간에 가장 급격하게 변하였으며 다음으로 Cr+Al, Al순 이였다. 또한, hole size의 크기에 따른 전기저항의 변화는 $50\;{\mu}m$ size의 hole을 pattern한 시편이 가장 안정한 저항 변화를 보였다.

  • PDF

The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole (원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han, Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

Numerical Study of Turbulent Flow and Combustion in a Micro Combustor with a Baffle Plate (배플이 부착된 마이크로 연소기의 난류유동 및 연소에 대한 수치해석 연구)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • Turbulent flow and combustion characteristics in a micro can combustor with a baffle plate are investigated by a Reynolds Stress Model. In order to examine the geometric effects on the turbulent combusting flow, several baffle configurations are selected. The interrelation between the flow structure and the thermal field are investigated by examing the variation of recirculation region, flame length and heat loss. For the flow mixing, the decreasing air hole is more efficient than the decrease of the fuel hole. As the fuel or air hole diameter decreases, combustion efficiency is enhanced and flame length is decreased. Additionally, as the diameter of air hole decreases, the heat loss and combustion temperature are increased, while they are reduced with decreasing the diameter of fuel hole.

Efficient Hole Searching Algorithm for the Overset Grid System with Relative Body Motion (상대운동이 있는 중첩격자계에 효율적인 Hole Searching Algorithm 개발)

  • Lee, Seon-Hyeong;Chae, Sang-Hyun;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.995-1004
    • /
    • 2011
  • Object X-ray method commonly used for hole search in overset grids requires huge amount of time due to complicated vector calculations to search the cross-points as well as time-consuming hole search algorithm with respect to background grids. Especially, when the grid system is in motion relative to the background, hole points should be searched at every time step, leading to hung computational burden. To cope with this difficulties, this study presents an efficient hole search algorithm mainly designed to reduce hole searching time. To this end, virtual surface with reduced grid points is suggested and logical operators are employed as a classification algorithm instead of complicated vector calculations. In addition, the searching process is further accelerated by designating hole points in a row rather than discriminating hole points with respect to each background grid points. If there exists a relative motion, the present algorithm requires much less time because only the virtual surface needs to be moved at every time step. The hole searching time has been systematically compared for a few selected geometries.

Improvement of Hole Geometric Accuracy by Powder Mixed Electro-chemical Discharge Machining Process (Powder Mixed ECDM (Electro-Chemical Discharge Machining)을 이용한 미세구멍가공의 정밀도 개선)

  • 한민섭;민병권;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.42-45
    • /
    • 2004
  • Electrochemical discharge machining (ECDM) has been found to be suitable for the micro-hole machining of nonconductive materials such as ceramics or glass compared with existing conventional and also non-conventional machining methods. However this machining process has some problems such as low geometric accuracy and low machining efficiency due to the random spark generation at the end of the electrode. This paper proposes the methods to improve the geometric accuracy of micro-hole using powder mixed ECDM process. The experimental results show the effects of powder producing improved geometric accuracy of machined hole and decreased concentration of spark energy.

  • PDF

A Study on the Air Cushion Pad of Non-contact Glass Transportation Unit (비접촉식 유리 평판 이송 장치 공기 패드 형상에 대한 연구)

  • Jeon, Hyeon-Ju;Kim, Gwang-Seon;Im, Ik-Tae
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.138-144
    • /
    • 2006
  • Non-contact transportation of a large-sized glass plate using air cushion for the sputtering system of liquid crystal display panel was considered. The gas is injected through multiple small holes to maintain the force for levitating glass plate. Complex flow field and resulting pressure distribution on the glass surface was numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF