• Title/Summary/Keyword: hole

Search Result 6,260, Processing Time 0.026 seconds

VORTEX STRUCTURE IN THE SCOUR HOLE BY GATE OPENING OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Choe, Jae-Wan
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2000
  • Jet flow can occur by gate opening at downstream of a hydraulic structure such as weir of drainage gate. If the stream bed is not hard or the bed protection is not sufficient, vortex erosion occurs and a resulting scour hole will be formed due to the high shear stress of the jet flow. Once the scour hole is formed, a vortex occurs in ti and this vortex causes additional erosion. If this erosion continues and reaches to the hydraulic structure, it can undermine the bottom of the hydraulic structure and this will lead to failure of the structure itself. Thus, it is necessary to define the physical features of the vortex structure in the scour hole for the design of the bed protection. This study presents the turbulent vortex structure in the scour hole by the gate opening of the hydraulic structure. Characteristics of vortex motion, circulation, vortex scale and vortex were analyzed through experiments. Experimental results of the vortex velocity were compared with theoretical ones. From these, circulation and vortex scale were obtained with known values of inflow depth, inflow velocity and scale of scour hole

  • PDF

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.

Tube-Hole Center Detection Vision Algorithm for Verifying Position of Tele-Controlled Robot in Nuclear Steam Generator (원전 증기발생기 내 원격제어 로보트의 위치 검증을 위한 세관중심 검출 비젼 알고리듬)

  • 성시훈;강순주;진성일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.137-145
    • /
    • 1998
  • In this paper, we propose a tube-hole center detection vision algorithm verifying the position of a tele-controlled robot and providing visual information for increasing reliability and efficiency in the diagnosis of steam generator (SG) tubes in nuclear power plant. A tele-controlled robot plays a role in carrying the probe used in inspecting the integrity of SG tubes. Thus accurately locating a tele-controlled robot on the desired tube-hole center is important issue for reliability of inspection. To do this work, we have to find the tube-hole center locations from the input image. At first, we apply the three-class segmentation method modified for this application. WE extract minimum bounding rectangles (MBRs) in the theresholded binary image. Second, for discriminating between MBR by tube and MBR by noise, we introduce the MBR rejection rules as knowledge-based rule set. MBRs are divided into the very dark region MBRs and the very bright region MBRs. In order to describe the region of complete tube-hole, the MBRs need a process of pairing each other. We then can find the tube-hole center from the paired MBR. For more accurately finding the tube-hole center in several sequential images, the centers of some frames need to be averaged. We tested the performance of our method using hundreds of real images.

  • PDF

Recent Development of In-hole Seismic Method for Measuring Dynamic Stiffness of Subsurface Materials (지반의 동적물성치 측정을 위한 인홀탄성파시험의 최근 발전)

  • Mok Young-Jin;Jung Jin-Hun;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.105-114
    • /
    • 2005
  • An in-hole seismic method, which has been developed for measuring dynamic properties of subsurface materials, was improved in terms of cost effectiveness and practicality. The upgraded features include the motorized triggering system rather than the manual prototype version in the previous studies and a connecting rod between source and receiver in the module. The probe, thus, can be used for the field measurements of soil properties as well as those of rocks. The performance of the probe has been evaluated through extensive cross-hole tests and in-hole tests at various sites.

A Study on the Detection of the Drilled Hole State In Drilling (드릴 가공된 구멍의 상태 검출에 관한 연구)

  • 신형곤;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 2003
  • Monitoring of the drill wear :md hole quality change is conducted during the drilling process. Cutting force measured by tool dynamometer is a evident feature estimating abnormal state of drilling. One major difficulty in using tool dynamometer is that the work-piece must be mounted on the dynamometer, and thus the machining process is disturbed and discontinuous. Acoustic transducer do not disturb the normal machining process and provide a relatively easy way to monitor a machining process for industrial application. for this advantage, AE signal is used to estimate the abnormal fate. In this study vision system is used to detect flank wear tendency and hole quality, there are many formal factors in hole quality decision circularity, cylindricity, straightness, and so of but these are difficult to measure in on-line monitoring. The movement of hole center and increasement of hole diameter is presented to determine hole quality. As the results of this experiment AE RMS signal and measurements by vision system are shorn the similar tendency as abnormal state of drilling.

GRAPHS WITH ONE HOLE AND COMPETITION NUMBER ONE

  • KIM SUH-RYUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1251-1264
    • /
    • 2005
  • Let D be an acyclic digraph. The competition graph of D has the same set of vertices as D and an edge between vertices u and v if and only if there is a vertex x in D such that (u, x) and (v, x) are arcs of D. The competition number of a graph G, denoted by k(G), is the smallest number k such that G together with k isolated vertices is the competition graph of an acyclic digraph. It is known to be difficult to compute the competition number of a graph in general. Even characterizing the graphs with competition number one looks hard. In this paper, we continue the work done by Cho and Kim[3] to characterize the graphs with one hole and competition number one. We give a sufficient condition for a graph with one hole to have competition number one. This generates a huge class of graphs with one hole and competition number one. Then we completely characterize the graphs with one hole and competition number one that do not have a vertex adjacent to all the vertices of the hole. Also we show that deleting pendant vertices from a connected graph does not change the competition number of the original graph as long as the resulting graph is not trivial, and this allows us to construct infinitely many graph having the same competition number. Finally we pose an interesting open problem.

A Numerical Study on the Effect of a Guide Hole on Crack Propagation Control in Blasting (발파에서 가이드공의 균열제어 유효성에 관한 수치 해석적 연구)

  • Lee, Hee-Gwang;Kim, Hak-Man;Kim, Seung-Kon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.299-307
    • /
    • 2010
  • The model experiments, which employ a charge hole and guide hole, are simulated to examine the effect of the guide hole on the crack propagation control in blasting. Crack patterns resulted from the analysis models, which consider the distance between the charge hole and guide hole, were compared. From the simulation analysis for the model experiments, it was revealed that all the guide holes used in this study were effective for controlling the crack propagation in blasting.

A Study on the Effect of Irregular Drill-hole Depth on Blast Vibration (불규칙한 천공장이 발파진동 크기에 미치는 영향에 관한 연구)

  • 강추원
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.316-320
    • /
    • 2003
  • This study is to evaluate an irregular drill-hole depth having an effect on the blast vibration. The relationship between a peak particle velocity and a cube root scaled distance with respect to three drill-hole depths with 2.1m, 2.3m and 2.4m are compared and analyzed using a numerical regression analysis. According to the results, the deeper a drill-hole depth is the larger a peak particle velocity is. It is suggested that a drill-hole depth is proportional to a peak particle velocity at the same scaled distance. Therefore, a regular drill-hole should be carried out in order that the blast vibration velocity of a fixed range under a allowable vibration velocity is maintained.

Efficiency Improvement of OLEDs depending on the Hole-size of Crucible Boat (Crucible Boat의 홀 크기에 따른 유기발광소자의 효율 개선)

  • Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • In the device structure of ITO/tris(8-hydroxyquinoline) aluminum ($Alq_3$)/Al device, we investigated the efficiency improvement of organic light-emitting diodes (OLEDs) depending on the hole-size of crucible boat. The device was manufactured using a thermal evaporation under the base pressure of $5{\times}10^{-6}\;Torr$. The $Alq_3$ organics were evaporated to be 100 nm thick at a deposition rate of $1.5\AA/s$, and in order to investigate the optimal surface roughness of $Alq_3$, the $Alq_3$ was thermally evaporated to be 0.8 mm, 1.0 mm, and 1.5 mm as a hole-size of the boat, respectively. We found that luminance and external quantum efficiency are superior when the hole-size of the boat is 1.0 mm. The external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of ten compared to the devices made with the hole-size of non boat.

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.