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GRAPHS WITH ONE HOLE AND
COMPETITION NUMBER ONE

SUuH-RyunG KM

ABSTRACT. Let D be an acyclic digraph. The competition graph
of D has the same set of vertices as D and an edge between vertices
w and v if and only if there is a vertex z in D such that (u, ) and
(v, ) are arcs of D. The competition number of a graph G, de-
noted by k(G), is the smallest number k such that G together with
k isolated vertices is the competition graph of an acyclic digraph.
It is known to be difficult to compute the competition number of
a graph in general. Even characterizing the graphs with competi-
tion number one looks hard. In this paper, we continue the work
done by Cho and Kim[3] to characterize the graphs with one hole
and competition number one. We give a sufficient condition for a
graph with one hole to have competition number one. This gener-
ates a huge class of graphs with one hole and competition number
one. Then we completely characterize the graphs with one hole and
competition number one that do not have a vertex adjacent to all
the vertices of the hole. Also we show that deleting pendant vertices
from a connected graph does not change the competition number of
the original graph as long as the resulting graph is not trivial, and
this allows us to construct infinitely many graph having the same
competition number. Finally we pose an interesting open problem.

1. Introduction

Suppose D is an acyclic digraph (for all undefined graph-theoretical
terms, see [1] and [17]). The competition graph G of D, denoted by
C(D), has the same set of vertices as D and an edge between vertices u
and v if and only if there is a vertex z in D such that (u,z) and (v, z) are
arcs of D. Roberts[16] observed that if G is any graph, G together with
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sufficiently many isolated vertices is the competition graph of an acyclic
digraph. Then he defined the competition number k(G) of a graph G to
be the smallest number k such that G together with k isolated vertices
added is the competition graph of an acyclic digraph. We shall use the
notation I, for the graph consisting of r vertices and no edges, and GUI,
for the graph consisting of the disjoint union of G' and I,.

The notion of competition graph was introduced by Cohen[5] as a
means of determining the smallest dimension of ecological phase space.
Since then, various variations have been defined and studied by many
authors (see, for example, [2, 4, 9, 11, 12, 13, 18, 19]). Besides an ap-
plication to ecology, the concept of competition graph can be applied
to the study of communication over noisy channel (see Roberts[16] and
Shannon|20]) and to problem of assigning channels to radio or televi-
sion transmitters (see Cozzens and Roberts[6], Hale[8], or Opsut and
Roberts[15]).

Roberts[16] observed that characterization of competition graph is
equivalent to computation of competition number. It does not seem to
be easy in general to compute k(G) for all graphs G, as Opsut[14] showed
that the computation of the competition number of a graph is an NP-
complete problem (see [11, 12] for graphs whose competition numbers
are known). It has been one of important research problems in the
study of competition graphs to characterize a graph by its competition
number.

We call a cycle of a graph G a chordless cycle of G if it is an in-
duced subgraph of G. A chordless cycle of length at least 4 of a graph
is called a hole of the graph and a graph without holes is called a
chordal graph. Since chordal graphs have several nice characterizations,
many researchers start with chordal graphs when investing a new graph-
theoretical problem. Roberts[16] showed that the competition number of
a chordal graph is at most one. On the other hand, given a positive inte-
ger n > 4, the maximum competition number of a graph with n vertices
is achieved uniquely by the complete bipartite graph K|, /2),n/2], Which
has a lot of holes (see [10]). These observations led Cho and Kim(3] to
ask: Does the competition number of a connected graph increase with
the number of hole it has? In order to answer this question, they studied
the family F of connected graphs with exactly one hole. They showed
that the competition number of a graph in F is at most two. Then they
tried to characterize the graphs in F that have competition number one
and gave a sufficient condition for the graphs in F to have competition
number one,
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In fact, the competition number of a connected graph can be one even
if it has many holes.

PROPOSITION 1. Given a positive integér n, there is a connected
graph G with k(G) = 1 and n holes

Proof. Let G be the graph consisting of n edge-disjoint holes Ci, .. .,
C. of length 4 having a common vertex together, and a clique of size
n+2 which has exactly one vertex w in common with C; and no vertices
in common with Cy, ..., C, (see Figure 1 for illustration). Let G be the

FIGURE 1. A graph G with n holes and k(G) =1

subgraph of G induced by V(C;1)U---UV(C,,). Since Gy is triangle-free,
its competition number equals |E(G)|— [V (G)|+2 (see Roberts|[16]) and
so k(G1) =4n— (3n+1)+2 = n+ 1. Let D; be an acyclic digraph
whose competition graph is G1U{i1,...,in41} whered; (j =1,...,n+1)
are isolated vertices of C(Dy). Let V(K,42) = {v1,v2,...,vn42} and
w = vp42. Now we construct a digraph D from D, as follows: Let

V(D) =V(Dy) UV (Kypy2) U {a} ~{i1,.. . yint1}

Then we obtain A(D) from A(D;) in the following way. We replace arc

(z,4) of Dy by arc (zx,v;) for j =1, ..., n+ 1. Then add arcs (v;,a)
for 5 =1, ..., n+21. Tt can easily be checked that D is acyclic and
C(D) =G U{a}. |

Proposition 1 implies that characterizing graphs G with k(G) = 1
in general is hard. For this reason, Cho and Kim[3] started with F to
characterize the competition graph with competition number one. In
this paper, we continue their work to characterize graphs in F that have
competition number one.
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2. Main results

We first present a theorem that shows that deleting a vertex of degree
one from a graph does not change its competition number as long as the
resulting graph is not a trivial graph. Let us call a vertex of degree one
a pendant vertex.

THEOREM 1. If G is a connected graph with at least one pendant
vertex and G* is obtained from G by deleting some of the pendant
vertices of G, then k(G) = k(G*) if and only if G* is not a trivial graph.

Proof. Suppose that G* is trivial. Then k(G*) = 0. Since G is
connected and has at least one pendant vertex, G has at least one edge,
k(G) > 1, and equality does not hold.

Now we suppose that G* is not trivial. Then G* is a connected graph
with at least one edge. We take a pendant vertex v and delete it from
G. We denote the resulting graph by G’. It is sufficient to show that
k(G') = k(G). We first claim that k(G’) < k(G). Let D be an acyclic
digraph whose competition graph is G U Ii, where k = k(G). Let u be
the vertex adjacent to v in G. By the definition of competition graph,
there exists a vertex w in V(D) such that (u,w) and (v,w) both are
in A(D). Since v is a pendant vertex, vertices u and v are the only
in-neighbors of w. Now we define a digraph D’ as follows:

V(D) =V(D) - {v}
and ;
A(Dl) = A(D) - {(u’ w)7 (an)}
U{(z,w) | (z,v) € A(D)} - {(z,v) | (z,v) € A(D)}.

Then it can be easily checked that D’ is still acyclic and C'(D’) = G'Ul.
Hence k(G') < k(G).

Let D* be an acyclic digraph whose competition graph is G’ U Iy
where k' = k(G’). Since v is a pendant vertex, G’ is still connected. By
the hypothesis, G’ has at least one edge and therefore k(G’) > 1. Thus

there exists a vertex a in V(D*) — V(G’). Now define a digraph D as
follows:

V(D) =V(D*)U{v}
and
A(D) = A(D*)U{(z,v) | (z,a) € A(D")}

—{(z,0) | (z,0) € A(D*)} U{(u,0a), (v,a)}.
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FIGURE 2. k(Gy) = k(G2) =2

Then it is obvious that D is acyclic, V(C(D)) = V(G) U Iy, and
E(C(D)) = E(G') U {uv}. Since u is the only vertex that is adjacent to
vin G, E(G")U{uwv} = E(G). Thus C(D) = GUI. Hence k(G) < k(G")
and the theorem follows. O

It follows from Theorem 1 that the graph Gy given in Figure 2 has
the same competition number as Gs.

A graph G with exactly one hole C has the following well-known
properties: If v is a vertex adjacent to two non-adjacent vertices of C,
then v is adjacent to all the vertices of C' and if X is the set of vertices
adjacent to all the vertices of C, then X is either a clique or the empty
set. In the rest of this section, unless it is stated otherwise, G means
a graph with one hole C = wvyv1---v;_1v9 (I > 4) and X means either
the clique of G whose vertices are adjacent to all vg, v1, ..., v;—1 or the
empty set if there are no such vertices. In addition, all subscripts are
reduced modulo /. By Theorem 1, without loss of generality, we may
assume that G does not have a pendant vertex. We call a walk (resp.
path) W a hole-avoiding walk (resp. hole-avoiding path) if none of the
internal vertices of W are on C or on X.

The following are some results on the structure of a graph with exactly
one hole obtained by Cho and Kim[3] that shall be used to prove our
main theorem.

LEMMA 1 (Cho and Kim(3]). If vertex w is in V(G) — X — V(C) and
there is a hole-avoiding path from w to v;, then there is no hole-avoiding
path from w to v; in G for any j satisfying |i — j| > 2.
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LEMMA 2 (Cho and Kim[3]). If there exists a vertex w in V(G) —
X —V(C) that is connected to both v; and v;,1 by hole-avoiding paths,
then X U{v;,viy1} is a vertex cut. Moreover, w belongs to a component
of G — {v;,vit1} — X different from the one including V(C) — {v;, vi+1}-

Given a vertex v of a graph G, we will denote by Ng(v) the open
neighborhood of v in G, the set containing v and all vertices adjacent
to v in G. In addition, in this paper, we will call a clique of size 3 a
triangle.

LEMMA 3 (Cho and Kim[3]). If K is clique of a chordal graph G,
then there exists an acyclic digraph D such that C(D) = G U I, and
the vertices of K have only outgoing arcs in D.

LEMMA 4 (Cho and Kim[3]). Suppose that G is a connected chordal
graph with at least one triangle. We take a vertex v of G. Then there is
an acyclic digraph D such that C(D) = GUI, and at least three vertices
of G including v have only outgoing arcs in D.

Cho and Kim(3] showed that the competition number of a graph with
exactly one hole is at most two.

THEOREM 2 (Cho and Kim[3]). If G has exactly one hole, then
k(G) < 2.

Then they identified a large family of graphs with exactly one hole
whose competition number is one. An illustration for Theorem 3 is given
in Figure 3.

“’/’

FIGURE 3. A graph satisfying the condition of Theorem 3

THEOREM 3 (Cho and Kim[3]). Suppose that G is a graph with
exactly one hole C. Let X be the set of all the vertices that are adjacent
to all the vertices on the hole. Suppose that there is a cut vertex v on
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FIGURE 4. A graph not satisfying the condition of The-
orem 3 but satisfying the condition of Theorem 4. In
this figure, N = {z,y, z}, Q1 and Q3 are the subgraphs
induced by {z,z,u} and {y}, respectively, N*(z) =
N*(y) =0, and N*(z) = {x1,z2}.

a triangle T such that the component of G — v containing the other two
vertices of T does not contain C — v. Then k(G) < 1 and the equality
holds if and only if G does not have an isolated vertex.

However, the graph given in Figure 4 does not satisfy the condition
of Theorem 3 and yet has competition number one. One of its charac-
teristics is that it has a vertex adjacent to two consecutive vertices of
the hole and this observation leads us to construct another huge family
of graphs with one hole and competition number one.

Suppose that there exists a vertex in V(G) — X adjacent to two
adjacent vertices on C. Without loss of generality, we may assume that
there exists a vertex in V(G) — X adjacent to both vy and v;. Let N be
the set of the vertices in V(G) — X that are adjacent to both vg and v;.
By the assumption, N # (. Now by Lemma 2, X U {vg,v1} is a vertex
cut of G and no vertex in N belongs to the same component as the one
that includes V(C) — {vg,v1}. Let @1, ..., Qs be the components of
G — X —{vg, v1} that include at least one vertex in N. For each vertex u
in V(G)—X -V (C), we denote by N*(u) the set of the vertices in X that
are adjacent to u, that is, X N Ng(u). See Figure 4 for an illustration
for these definitions. Now we prove the following lemmas.
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LEMMA 5. Ifu and v in Q; are adjacent for some i € {1,2,...,s},
then N*(u) C N*(v) or N*(u) D N*(v).

Proof. Suppose that there exist vertices z in N*(u) — N*(v) and y in
N*(v) — N*(u). Since X is a clique, z is adjacent to y. Then u, v, ¥y, ,
u is a hole of length 4 and we reach a contradiction. Hence the lemma
follows. ([

LEMMA 6. If P is a shortest hole-avoiding path from u to v for some
u, v € N, then the internal vertices of P also belong to N.

Proof. If there is an internal vertex w on P that is not adjacent to
vp, then we let w* be the first vertex on (w,u)-section of P~! that is
adjacent to vp and w** be the first vertex on (w,v)-section of P that is
adjacent to vg. We denote the (w*, w**)-section of P by P’. Then vyP'vg
is a hole of length at least 4 and we reach a contradiction. Similarly we
can show that any internal vertex of P is adjacent to v;. Thus, all the
vertices on P belong to NV and therefore the lemma follows. O

LEMMA 7. If a path u = ugu; - - - ug = v, denoted by P*, is a shortest
hole-avoiding path from u to v for some u, v € N, then for some q* €
{0,...,4}, N*(ug)U - -- UN*(uq) = N*(ugr).

Proof. By Lemma 6, u; is in N for each i =0, ..., g. By Lemma 5,
N*(up) € N*(u1) or N*(ug) O N*(u1) and therefore N*(ug) UN*(u1) =
N*(ug) or N*(ug) U N*(u1) = N*(u;). Now suppose that the lemma
is false and u,, r < g, is the last vertex on P* such that N*(ug)U ---
UN*(u,) = N*(up+) for some r* < r. If 7* = r, then, by Lemma 5,
N*(ur+) € N*(urq1) or N*(um+) 2 N*(ur+1) and in any case, we reach
a contradiction to our supposition. Thus r* < r. If there exists a vertex
z in N*(up«) — N*(tr41) and y in N*(up41) — N*(upr), then y is not
contained in N*(ug) UN*(uq)U - - - UN*(u,), which implies that y is not
adjacent to any of ug, ..., u,. Since z and y are in X, x and y are
adjacent. Let w* be the last vertex on the (up~, u,41)-section of P* that
is adjacent to x. Denote (w*, u,41)-section of P* by P’. Then zP'yx
is a hole and we reach a contradiction. Thus N*(u,+) C N*(up4+1) or
N*(up+) O N*(ur41) and we reach a contradiction. Hence the lemma
follows. a

LeEMMA 8. For any r € {1,...,s}, there exists a vertex z, in N N
V(Qr) such that Uyennv(g,)N*(w) = N*(z).

Proof. Let N NV(Q,) = {w1,...,wy,}, where n, = [N NV(Q,)|
Since w; and wy are in the same component, there is an hole-avoiding
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path in @, from wy to wy. Let P = uguy - - - ug—1uq (¥p = w1, Uqg = wo)
be the shortest among such paths. By Lemma 7, there is a vertex wy,2) €
{uo,u1, ..., uq} such that N*(wyg)) = N*(ug)U---UN*(uy) where ¢ is
amapping on {1,2,...,n,}. By Lemma 6, {ug,u1,...,uq} € NNV(Q,)
and so wy(z) € NN V(Q,). Since {wy, wa} C {uo,u1,-..,uq}, it is true
that N*(w1) U N*(w2) € N*(wy(z))- By applying a similar argument
for vertices wy(z) and w3, we can show that there exists vertex wy3) in
N N V(Qr) such that N*(wyg)) U N*(w3) € N*(wy)). Then clearly
N*(w1) U N*(wa) U N*(w3) € N*(wy(3)). We repeat the argument as
above until we find vertex wy,,) such that N*(w1)U -+ UN*(wp,) C
N*(wy(n,))- Clearly N*(w1)U -+ UN*(wn,) 2 N*(wy(n,)) and therefore
N*(w1)U -+ UN*(wn,) = N*(wyn,)).- We let wyp,) = 2z and the
lemma follows. O

Now we are ready to show the following theorem that gives a huge
family of graph with one hole and competition number one:

THEOREM 4. Suppose that G is a graph with exactly one hole C.
Let X be the set of all the vertices that are adjacent to all the vertices
on the hole. Suppose that there exists a vertex in V(G) — X adjacent
to two adjacent vertices on C. Then k(G) < 1 and the equality holds if
and only if G does not have an isolated vertex.

Proof. Without loss of generality, we may assume that there exists a
vertex in V(G) — X adjacent to both vy and vy. Recall that N is the
set of the vertices in V(G) — X that are adjacent to both vy and v;.
Also recall that Q, ..., Q, are the components of G — X — {vp, v1} that
include at least one vertex in N. For each vertex u in V(G)—X —V(C),
N*(u) denotes the set of the vertices in X that are adjacent to u, that
is, XN N(;(u).

Foreachr € {1,..., s}, we let G, be the graph induced by the vertices
in {vo, v1 }UV(Q,)UN*(z2,) where z, is the vertex obtained in Lemma 8.
Then obviously G, is chordal for any r € {1,...,s}. Let G’ be the graph
induced by the vertices in V(G) — [V(Q1)U---UV(Qs)]. We note that
V(C) Cc V(G'). We denote G’ — vguy by G*.

Suppose that there exists a vertex in V(Q,) — N adjacent to some
vertex  in X — N*(2,). Let u be a vertex closest to 2z, among such
vertices. We will reach a contradiction. Let Z be a shortest hole-avoiding
path from u to z.. Suppose that an internal vertex z of Z is adjacent to
z. If zisin V(Q,)— N, then z is nearer to z, than u, contradicting to the
choice of u. Thus z isin V(Q,)NN. Then by Lemma 8, N*(z) € N*(z,).
But € N*(z) and this contradicts the fact that z is in X —N*(2,). Thus
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no internal vertex of Z is adjacent to z. Since u belongs to V(Q,) — N,
u is not adjacent to one of vg and v1. Without loss of generality, we may
assume that u is not adjacent to vg. Let w* be the first vertex on Z that
is adjacent to vg and denote the (u, w*)-section of Z by Z;. Then Zyvpzu
is a hole, which is a contradiction. Therefore we can conclude that any
vertex in V(Q,) — N is not adjacent to any vertex in X — N*(2,). Thus

N*(zr) = Uyev (@) N ™ (u).

Hence for each 1 < r < s, @, is also a component of G—N*(z,)—{vo, v1}
and therefore

(1) E(G) = E(G1)U---UE(Gs) U E(G").

We now claim that G* is chordal. For otherwise there is a hole C* of
length at least 4 in G*. Then edge vgv; must be a chord of C* in G and
there must be a vertex v on C* (but not on C) that is adjacent to both
vp and vy in G. If V(C*) = V(C) U {v}, then it is obvious that v ¢ X.
If V(C*) # V(C) U {v}, then there is a vertex v’ not on C such that
vovv1v'vg is the vertex sequence of C*. Then v and v’ are nonadjacent
in G, and so one of v, v' cannot be in X. In both cases, we have found a
vertex in V(G) — X — V(C). Then by the definition of @1, ..., Qs, the
vertex belongs to @, for some r € {1,...,s}. However, it is a vertex on
C* and so belongs to to G*, which is a contradiction.

We note that the vertices in N*(z,) together with z,, vg, v; form a
clique in G,. Then by Lemma 3, for each 1 < r < s, there is an acyclic
digraph D, such that C(D,) = G, U {a,}, where a, is an extra isolated
vertex, and the vertices in N*(z,) U {vp,v1} U {2} have only outgoing
arcs in D,. Again, since X is a clique of G*, there is an acyclic digraph
D* such that C(D*) = G* U {a*} and, where a* is an extra isolated
vertex and the vertices in X have only outgoing arcs in D* by Lemma 3.
Now we construct digraph D as follows:

V(D) =V(G1)U...UV(Gs) UV(G*) U{a1}

and

A(D) = A(D1) U[A(D2) U{(z,21) | (z,a2) € A(D2)}
—{(z,a2) | (z,02) € A(D2)}]
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U[ADs) U{(z,2,-1)) | (z,as) € A(Ds)}

—{(z,as) | (z,a;) € A(Ds)}]
UIA(D") U{(z, 25) | (,a") € A(D")}
—{(@,a") | (z,0%) € A(D*)}.

We note that no vertices other than vg, v1, and the vertices in X
belong to more than one of Dy, ..., D, and D*. But none of vy, vi,
vertices in X has incoming arcs in each of those digraphs. Thus D is
acyclic. Moreover, since z, does not have incoming arcs in D, for each
1 <r < s, it follows from (1) that C(D) = G U {a1}.

If G has no isolated vertices, then k{(G) > 1 and therefore k(G) = 1.
If G has an isolated vertex z, then we can find an acyclic digraph D’

whose competition graph is (G — z) U {a1} as above. Then we replace
a1 by z. Therefore, k&(G) = 0. O

The competition number of a graph with one hole and X = ( is easily
determined by the following theorem:

THEOREM 5. Suppose that a connected graph G has exactly one hole
and no vertices of G are adjacent to all the vertices on the hole. Then
k(G) =1 if and only if G has at least one triangle.

Proof. If G has no triangles, then GG consists of one hole with a tree
attached at each vertex of the cycle (refer to Figure 2). By Theorem 1,
k(G) =2.

Now suppose that G has a triangle. If there is a triangle sharing one
edge with the cycle, then k(G) < 1 by Theorem 4. Suppose that no
triangles share an edge with the cycle. Let T be a triangle of G and
C = vouy - - - vj—1 the hole. Take two (not necessarily distinct) vertices x
and y on T. Suppose that there are hole-avoiding paths P; and P from z
to v; and y to vj, respectively, for distinct ¢ and j in {0,1,...,1—1}. We
may assume that P; and P, are the shortest among hole-avoiding (z, v;)-
paths and hole-avoiding (y,v;)-paths, respectively. Then, by Lemma 1,
J=i+1lorj=1i—-1 (mod!) and so v; and v; are adjacent. Our
supposition that no triangles share an edge with C tells us that the vertex
immediately preceding v; on P and the vertex immediately preceding
vj on P, are nonadjacent to v; and to v;, respectively. Now it is not
difficult to check that closed walk formed by paths P, 1 2y, Py, and VU5
includes a hole which is distinct from C. Thus we reach a contradiction
and we conclude that there is exactly one vertex on C to which there is
an hole-avoiding path from a vertex on T'. Let v; be this vertex. Then
clearly v; is a cut vertex of G and we let Q) be the component of G — v;
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that contains the vertices of T'. Obviously ) contains no vertices of the
cycle. Now we consider the graph G’ induced by the vertices of @ and
v;. Then G’ is chordal. By Lemma, 4, there is an acyclic digraph D’
such that C(D') = G’ U {a}, where a is an extra isolated vertex, and
G’ has at least three vertices including v; with only outgoing arcs in D'.
We denote by v, w, the two vertices other than v;. Now we consider the
graph G” induced by the vertices in V(G) — V(Q). Then by Theorem 2,
there is an acyclic digraph D" such that C(D”) = G” U {b, c}, where b
and c are extra isolated vertices. Now we construct an acyclic digraph
D as follows: We let

V(D)=V(G)uV(G")U{a}
and
A(D)= A(D')U A(D")
U{(z,v) | (,b) € A(D")} U{(z,w) | (z,c) € A(D")}
—{(=,0) | (2,b) € A(D")} —{(z,¢) | (z,c) € A(D")}.

Then D is acyclic since v; is the only common vertex of G’ and G” and
v; has only outgoing arcs in D’. Since v;, v, and w have only incoming
arcs in D/, C(D) = G U {a}. Hence k(G) < 1 whether or not there is a
triangle sharing one edge with C. Since G is connected, k(G) > 1 and
therefore k(G) = 1. O

3. Closing remarks

In this paper, we gave another sufficient condition for a graph with
one hole to have its competition number one. The author has not found
any graphs with one hole and competition number one that satisfy nei-
ther the sufficient condition given in Theorem 3 nor the sufficient con-
dition given in Theorem 4.

Given a positive integer n and a positive integer &k, k < n + 1, by
replacing K1 with K,,_r+3 in Figure 1, we can construct a connected
graph G with n holes and k(G) = k. For example, if K = n + 1, then
the graph in Figure 1 becomes the one given in Figure 5. Since G is
triangle-free, k(G) = |E(G)| — |V (G)| +2 and so its competition number
isn+1. Then we may ask: Is n+ 1 the maximum competition numbers
of a graph with n holes? The answer is yes if n =0 or n = 1.
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FIGURE 5. A graph G with n holes and k(G) =n + 1.
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