• Title/Summary/Keyword: hnRNP E1

Search Result 6, Processing Time 0.01 seconds

Cloning of hnRNP E1 cDNA via yeast two-hybrid system and a study on protein-protein interaction between hnRNP E1 and hnRNP K (이스트 two-hybrid 시스템을 이용한 hnRNP E1 cDNA의 클로닝과 hnRNP E1-hnRNP K 상호결합에 대한 연구)

  • Choi, Mie-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1795-1799
    • /
    • 2008
  • The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a component of hnRNP complexes. This protein binds strongly to cytidine-rich RNA/DNA sequences. It is a nucleocytoplasmic shuttling protein. To investigate the functions of hnRNP K, I searched for hnRNP K-interacting proteins in HeLa cDNA library using a yeast two-hybrid screening system. One of the cDNA clones is identical to human hnRNP E1 (poly(rC) binding protein 1) cDNA (GenBank accession number XM_031585). In this study, hnRNP K is shown to specifically interact with hnRNP E1 in yeast two-hybrid system and in vitro biochemical assay.

Human Ribosomal Protein L18a Interacts with hnRNP E1

  • Han, Sun-Young;Choi, Mie-Young
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.143-148
    • /
    • 2008
  • Heterogeneous nuclear ribonucleoprotein E1(hnRNP E1) is one of the primary pre-mRNA binding proteins in human cells. It consists of 356 amino acid residues and harbors three hnRNP K homology(KH) domains that mediate RNA-binding. The hnRNP E1 protein was shown to play important roles in mRNA stabilization and translational control. In order to enhance our understanding of the cellular functions of hnRNP E1, we searched for interacting proteins through a yeast two-hybrid screening while using HeLa cDNA library as target. One of the cDNA clones was found to be human ribosomal protein L18a cDNA(GenBank accession number BC071920). We demonstrated in this study that human ribosomal protein L18a, a constituent of ribosomal protein large subunit, interacts specifically with hnRNP E1 in the yeast two-hybrid system. Such an interaction was observed for the first time in this study, and was also verified by biochemical assay.

Analysis of the Role of RGG box of human hnRNP A1 protein (인간 hnRNP A1 단백질에 포함된 RGG 상자의 기능 분석)

  • Choi, Mieyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.575-580
    • /
    • 2017
  • This study analyzed the effects of RGG box of hnRNP A1 on its subcellular localization and stabilization of hnRNP A1 over a three year period from October 2014. First, a 6R/K mutation in RGG box was generated, and pcDNA1-HA-hnRNP A1(6R/K) was constructed. The subcellular localization of hnRNP A1(6R/K) from the HeLa cells transfected with this plasmid DNA was analyzed by immunofluorescence microscopy. HA-hnRNP A1(6R/K) was found to exhibit nuclear and cytoplasmic fluorescence. The stability of hnRNP A1(6R/K) was checked by Western blot analysis using the expressed protein from the HeLa cells transfected with the pcDNA1-HA-hnRNP A1(6R/K). The results show that HA-hnRNP A1(6R/K) has a smaller size. These confirm that HA-hnRNP A1(6R/K) is localized both in the nuclear and cytoplasm, not because 6R/K mutation affects the nuclear localization of hnRNP A1, but because 6R/K mutation causes hnRNP A1(6R/K) to cleave at the mutation or near the mutation site. The cleaved protein fragment, which lacks the M9 domain (i.e. nuclear localization signal of hnRNP A1), did not exhibit nuclear fluorescence. This suggests that the arginines of RGG box in hnRNP A1 play an important role in stabilizing hnRNP A1. An analysis of the RNA-binding ability of hnRNP A1(6R/K) expressed and purified from bacteria will be a subsequent research project.

Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Ohn, Takbum;Lee, Younghoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.318-322
    • /
    • 2017
  • Brain cytoplasmic 200 RNA (BC200 RNA) is a neuron-specific non-coding RNA, implicated in the inhibition of local synaptodendritic protein synthesis, and is highly expressed in some cancer cells. Although BC200 RNA has been shown to inhibit translation in vitro, the cellular location of this inhibition is unknown. In this study, we used a BC200 RNA-recognizing antibody to identify the cellular locations of BC200 RNA in HeLa cervical carcinoma cells. We observed punctate signals in both the cytoplasm and nucleus, and further discovered that BC200 RNA co-localized with the p-body decapping enzyme, DCP1A, and the heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2). The latter is a known BC200 RNA-binding partner protein and a constituent of p-bodies. This suggests that BC200 RNA is localized to p-bodies via hnRNP E2.

Metastasis prognostic factors and cancer stem cell-related transcription factors associated with metastasis induction in canine metastatic mammary gland tumors

  • Kim, Saetbyul;Bok, Eunyeong;Lee, Sangyeob;Lee, Hyeon-Jeong;Choe, Yongho;Kim, Na-Hyun;Lee, Won-Jae;Rho, Gyu-Jin;Lee, Sung-Lim
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.62.1-62.13
    • /
    • 2021
  • Background: Canine mammary gland tumor (MGT) is the most common cancer in aged female dogs. Although it's important to identify reliable metastasis or prognostic factors by evaluating related to cell division, adhesion, and cancer stem cell-related transcription factor (TF) in metastasis-induced canine MGT, but there are limited studies. Objectives: We aimed to identify metastasis prognostic factors and cancer stem cell-TFs in canine MGTs. Methods: Age-matched female dogs diagnosed with MGT only were classified into metastatic and non-metastatic groups by histopathological staining of MGT tissues. The mRNA levels of cancer prognostic metastasis molecular factors (E-cadherin, ICAM-1, PRR14, VEGF, HPRT1, RPL4 and hnRNP H) and cancer stem cell-related TFs (Oct4, Sox2, and Nanog) were compared between metastatic and non-metastatic canine MGT tissues using qRT-PCR analysis. Results: The mRNA levels of ICAM-1, PRR14, VEGF, hnRNP H, Oct4, Sox2, and Nanog in metastatic MGT group were significantly higher than those in non-metastatic MGT group. However, mRNA level of RPL4 was significantly lower in metastatic MGT group. Loss of E-cadherin and HPRT1 was observed in the metastatic MGT group but it was not significant. Conclusions: Consistent expression patterns of all metastasis-related factors showing elevation in ICAM-1, PRR14, VEGF, hnRNP H, Oct4, Sox2, and Nanog, but decreases in RPL4 levels occurred in canine MGT tissues, which was associated with metastasis. Thus, these cancer prognostic metastasis factors and TFs of cancer stem cells, except for E-cadherin and HPRT1, can be used as reliable metastasis factors for canine MGT and therapeutic strategy.

Thermodynamic Analyses of the Constitutive Splicing Pathway for Ovomucoid Pre-mRNA

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.657-665
    • /
    • 2009
  • The ovomucoid pre-mRNA has been folded into mini-hairpins adaptable for the RNA recognition motif (RRM) protein binding. The number of mini-hairpins were 372 for pre-mRNA and 83-86 for mature mRNA. The spatial arrangements are, in average, 16 nucleotides per mini-hairpin which includes 7 nt in the stem, 5.6 nt in the loop and 3.7 nt in the inter-hairpin spacer. The constitutive splicing system of ovomucoid-pre-mRNA is characterized by preferred order of intron removal of 5/6 > 7/4 > 2/1 > 3. The 5' splice sites (5'SS), branch point sequences (BPS) and 3' splice sites (3'SS) were identified and free energies involved have been estimated in 7 splice sites. Thermodynamic barriers for splice sites from the least (|lowest| -Kcal) were 5, 4, 7, 6, 2, 1, and 3; i.e., -18.7 Kcal, -20.2 Kcal, -21.0 Kcal, -24.0 Kcal, - 25.4 Kcal, -26.4 Kcal and -28.2 Kcal respectively. These are parallel to the kinetic data of splicing order reported in the literature. As a result, the preferred order of intron removals can be described by a consideration of free energy changes involved in the spliceosomal assembly pathway. This finding is consistent with the validity of hnRNP formation mechanisms in previous reports.