• 제목/요약/키워드: histone demethylation

검색결과 13건 처리시간 0.023초

Vitamin C enhances the expression of IL17 in a Jmjd2-dependent manner

  • Song, Mi Hye;Nair, Varun Sasidharan;Oh, Kwon Ik
    • BMB Reports
    • /
    • 제50권1호
    • /
    • pp.49-54
    • /
    • 2017
  • Previously, we reported that vitamin C facilitates the CpG demethylation of Foxp3 enhancer in $CD4^+Foxp3^+$ regulatory T cells (Tregs) by enhancing the activity of a DNA demethylase ten-eleven-translocation (Tet). However, it is not clear whether vitamin C affects other helper T cell lineages like T helper type 17 (Th17) cells which are related with Tregs. Here, we show that the expression of interleukin-17A (IL17) increases with the treatment of vitamin C but not with other antioxidants. Interestingly, the upregulation of IL17 was not accompanied by DNA demethylation in Il17 promoter and was independent of Tet enzymes. Rather, vitamin C reduced the trimethylation of histone H3 lysine 9 (H3K9me3) in the regulatory elements of the Il17 locus, and the effects of vitamin C were abrogated by knockdown of jumonji-C domain-containing protein 2 (jmjd2). These results suggest that vitamin C can affect the expression of IL17 by modulating the histone demethylase activity.

Recovery of Genes Epigenetically Altered by the Histone Deacetylase Inhibitor Scriptaid and Demethylating Agent 5-Azacytidine in Human Leukemia Cells

  • Park, Eun-Kyung;Jeon, Eun-Hyung;Kim, In-Ho;Park, Seon-Yang
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.185-193
    • /
    • 2010
  • Histone deacetylation and demethylation are epigenetic mechanisms implicated in cancer. Studies regarding the role of modulation of gene expression utilizing the histone deacetylase inhibitor scriptaid and the demethylating agent 5-azacytidine in HL-60 leukemia cells have been limited. We studied the possibility of recovering epigenetically silenced genes by scriptaid and 5-azacytidine in human leukemia cells by DNA microarray analysis. The first group was leukemia cells that were cultured with 5-azacytidine. The second group was cultured with scriptaid. The other group was cultured with both agents. Two hundred seventy newly developed genes were expressed after the combination of 5-azacytidine and scriptaid. Twenty-nine genes were unchanged after the combination treatment of 5-azacytidine and scriptaid. Among the 270 genes, 13 genes were differed significantly from the control. HPGD, CPA3, CEACAM6, LOC653907, ETS1, RAB37, PMP22, FST, FOXC1, and CCL2 were up-regulated, and IGLL3, IGLL1, and ASS1 were down-regulated. Eleven genes associated with oncogenesis were found among the differentially expressed genes: ETS1, ASCL2, BTG2, BTG1, SLAMF6, CDKN2D, RRAS, RET, GIPC1, MAGEB, and RGL4. We report the results of our leukemia cell microarray profiles after epigenetic combination therapy with the hope that they are the starting point of selectively targeted epigenetic therapy.

시토신 탈메틸화 관련 NtROS2a 유전자 발현을 제어한 RNAi 식물의 DNA microarray 분석 (DNA microarray analysis of RNAi plant regulated expression of NtROS2a gene encoding cytosine DNA demethylation)

  • 최장선;이인혜;정유진;강권규
    • Journal of Plant Biotechnology
    • /
    • 제43권2호
    • /
    • pp.231-239
    • /
    • 2016
  • 담배에서 후성유전관련 유전자의 발현연구를 위해 담배유래 시토신 DNA 탈메틸화 관련 NtROS2a 유전자를 과발현 및 RNAi 식물체를 육성하였다. 이들 형질전환체들은 고염 및 산화 스트레스하에서 내성이 증진되었으며, 다양한 표현형변이를 보였다(Lee et al. 2015). 본연구에서는 선발된 과발현 (OX1), RNAi 식물체(RNAi 13) 및 대조식물체(WT)를 이용하여 Agilent Tobacco 4 X 44K Oligo chip으로 microarray분석을 수행하였다. OX1과 RNAi13 계통을 이용하여 WT과 함께 비교 분석한 결과, 대부분 세포 내 이온 수송, 영양 공급 등과 같은 물질대사와 생물적 비생물적 스트레스 및 methylation과 관련되어 영향을 주는 유전자들에서 up-regulation 되었고, 물질대사관련 유전자와 세포 내 기능유전자의 역할을 담당하는 조효소, 그리고 다양한 스트레스 및 메틸레이션 관련 유전자군에서 또한 down-regulation되었다. 각각의 up-, down-regulation된 유전자들을 WT과 비교하여 qRT-PCR을 수행한 결과, KH domain-containing protein, MADS-box protein 및 Zinc phosphodiesterase ELAC protein 유전자들에서 발현이 높게 나타났으며, 반면에 pentatricopeptide (PPR) repeat-containing protein, histone deacetylase HDAC3 protein 및 protein kinase는 0.4 ~ 1.0-fold 발현양이 감소되었다. 따라서 DNA glycosylase를 암호화하는 NtROS2a 유전자는 demethylation과 관련되어 담배 식물체에서 다양한 전사레벨을 조절하는 것으로 판단된다.

MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae

  • Huh, Aram;Dubey, Akanksha;Kim, Seongbeom;Jeon, Junhyun;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제33권2호
    • /
    • pp.193-205
    • /
    • 2017
  • Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, which encode putative histone demethylases containing JmjC domain. Deletion of one gene, MoJMJ1, belonging to JARID group, resulted in defects in vegetative growth, asexual reproduction, appressorium formation as well as invasive growth in the fungus. Western blot analysis showed that global H3K4me3 level increased in the deletion mutant, compared to wild-type strain, indicating histone demethylase activity of MoJMJ1. Introduction of MoJMJ1 gene into ${\Delta}Mojmj1$ restored defects in pre-penetration developments including appressorium formation, indicating the importance of histone demethylation through MoJMJ1 during infection-specific morphogenesis. However, defects in penetration and invasive growth were not complemented. We discuss such incomplete complementation in detail here. Our work on MoJMJ1 provides insights into H3K4me3-mediated regulation of infection-specific development in the plant pathogenic fungus.

Methylation Changes of Lysine 9 of Histone H3 during Preimplantation Mouse Development

  • Yeo, Seungeun;Lee, Kyung-Kwang;Han, Yong-Mahn;Kang, Yong-Kook
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.423-428
    • /
    • 2005
  • Immediately after fertilization, a chromatin remodeling process in the oocyte cytoplasm extracts protamine molecules from the sperm-derived DNA and loads histones onto it. We examined how the histone H3-lysine 9 methylation system is established on the remodeled sperm chromatin in mice. We found that the paternal pronucleus was not stained for dimethylated H3-K9 (H3-$m_2K9$) during pronucleus development, while the maternal genome stained intensively. Such H3-$m_2K9$ asymmetry between the parental pronuclei was independent of $HP1{\beta}$ localization and, much like DNA methylation, was preserved to the two-cell stage when the nucleus appeared to be compartmentalized for H3-$m_2K9$. A conspicuous increase in H3-$m_2K9$ level was observed at the four-cell stage, and then the level was maintained without a visible change up to the blastocyst stage. The behavior of H3-$m_2K9$ was very similar, but not identical, to that of 5-methylcytosine during preimplantation development, suggesting that there is some connection between methylation of histone and of DNA in early mouse development.

Temporal and Spatial Expression Patterns of Nine Arabidopsis Genes Encoding Jumonji C-Domain Proteins

  • Hong, Eun-Hye;Jeong, Young-Min;Ryu, Jee-Youn;Amasino, Richard M.;Noh, Bosl;Noh, Yoo-Sun
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.481-490
    • /
    • 2009
  • Diverse posttranslational modifications of histones, such as acetylation and methylation, play important roles in controlling gene expression. Histone methylation in particular is involved in a broad range of biological processes, including heterochromatin formation, X-chromosome inactivation, genomic imprinting, and transcriptional regulation. Recently, it has been demonstrated that proteins containing the Jumonji (Jmj) C domain can demethylate histones. In Arabidopsis, twenty-one genes encode JmjC domain-containing proteins, which can be clustered into five clades. To address the biological roles of the Arabidopsis genes encoding JmjC-domain proteins, we analyzed the temporal and spatial expression patterns of nine genes. RT-PCR analyses indicate all nine Arabidopsis thaliana Jmj (AtJmj) genes studied are actively expressed in various tissues. Furthermore, studies of transgenic plants harboring AtJmj::${\beta}$-glucuronidase fusion constructs reveal that these nine AtJmj genes are expressed in a developmentally and spatially regulated manner.

HIF-1-Dependent Induction of Jumonji Domain-Containing Protein (JMJD) 3 under Hypoxic Conditions

  • Lee, Ho-Youl;Choi, Kang;Oh, Hookeun;Park, Young-Kwon;Park, Hyunsung
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.43-50
    • /
    • 2014
  • Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using $O_2$, ${\alpha}$-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-$1{\alpha}/{\beta}$ under hypoxia and that treatment with Clioquinol, a HIF-$1{\alpha}$ activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-$1{\alpha}$ and its dimerization partner HIF-$1{\beta}$/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-$1{\alpha}/{\beta}$ heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.

SET7-mediated TIP60 methylation is essential for DNA double-strand break repair

  • Song Hyun, Kim;Junyoung, Park;Jin Woo, Park;Ja Young, Hahm;Seobin, Yoon;In Jun, Hwang;Keun Pil, Kim;Sang-Beom, Seo
    • BMB Reports
    • /
    • 제55권11호
    • /
    • pp.541-546
    • /
    • 2022
  • The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is crucial for maintaining genomic integrity and is involved in numerous fundamental biological processes. Post-translational modifications by proteins play an important role in regulating DNA repair. Here, we report that the methyltransferase SET7 regulates HR-mediated DSB repair by methylating TIP60, a histone acetyltransferase and tumor suppressor involved in gene expression and protein stability. We show that SET7 targets TIP60 for methylation at K137, which facilitates DSB repair by promoting HR and determines cell viability against DNA damage. Interestingly, TIP60 demethylation is catalyzed by LSD1, which affects HR efficiency. Taken together, our findings reveal the importance of TIP60 methylation status by SET7 and LSD1 in the DSB repair pathway.

조직.기관의 분화와 유전자 발현의 조절, 최근의 진보 (Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression)

  • Harn, Chang-Yawl
    • 식물조직배양학회지
    • /
    • 제24권1호
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

벼 성숙종자로부터 배상체 캘러스 형성 및 식물체 재분화에 DNA methylation 억제제인 5-azacytidine의 영향 (Effects of 5-azacytidine, a DNA methylation inhibitor, on embryogenic callus formation and shoot regeneration from rice mature seeds)

  • 이연희;이정숙;김수윤;손성한;김둘이;윤인선;권순종;서석철
    • Journal of Plant Biotechnology
    • /
    • 제35권2호
    • /
    • pp.133-140
    • /
    • 2008
  • DNA와 histone 단백질의 변형은 식물 발달에 상당히 중요한 역할을 하는 것으로 알려져 있다. 식물 조직 배양 및 식물 발달 단계에서 methylation의 영향을 알아보고자 벼 종자로부터 캘러스 형성 및 식물체 재분화 단계에서 demethylation 물질인 5-azacytidine을 처리하여 유전자 발현 양상을 분석하였다. 식물체로의 재분화 능력이 있는 벼 배상체 캘러스는 5-azaC가 첨가된 H6A 배지에서는 형성되지 않았으며 갈색을 띠는 캘러스가 형성되었다. 또한 정상적인 캘러스를 5-azaC가 첨가된 MSRA 재분화 배지에서 배양했을 때도 대조구와는 달리 식물체 재분화는 이루어지지 않았다. 이러한 결과는 5-azaC가 정상적인 배상체 캘러스 및 shoot 분화에 부정적인 영향을 미친다는 것을 나타냈으며 따라서 DNA methylation이 식물 조직배양에서의 정상적인 세포 dedifferentiation과 differentiation에 필수 요인이라는 것을 알 수 있었다. 벼 캘러스 형성 및 재분화 과정 동안의 methylation 영향을 알아보고자 각 단계별로 5-azaC를 처리 후 $GeneFishig^{TM}$ DEG와 DNA chip을 사용하여 유전자 발현 양상을 분석하였다. Epigenetic regulation, 전자전달, 핵산대사, 스트레스 반응에 관여하는 일부 유전자들의 발현이 증가하거나 감소하는 것을 알 수 있었다. 발현 차이가 있는 일부 유전자를 클로닝하여 확인하였고 RT-PCR 및 northern 분석으로 각 단계에서의 발현 차이를 할인하였다.