• Title/Summary/Keyword: histone deacetylase 8

Search Result 35, Processing Time 0.023 seconds

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer (비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전)

  • Chang, Yoon Soo;Lee, Ho-Young;Kim, Young Sam;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Kim, Se Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.465-484
    • /
    • 2004
  • Background : Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) inhibits the proliferation of non-small cell lung cancer (NSCLC) cells by inducing apoptosis. Methods : In this study, we investigated whether hypermethylation of IGFBP-3 promoter play an important role in the loss of IGFBP-3 expression in NSCLC. We also studied the mechanisms that mediate the silencing of IGFBP-3 expression in the cell lines which have hypermethylated IGFBP-3 promoter. Results : The IGFBP-3 promoter has hypermethylation in 7 of 15 (46.7%) NSCLC cell lines and 16 (69.7%) of 23, 7 (77.8%) of 9, 4 (80%) of 5, 4 (66.7 %) of 6, and 6 (100%) of 6 tumor specimens from patients with stage I, II, IIIA, IIIB, and IV NSCLC, respectively. The methylation status correlated with the level of protein and mRNA in NSCLC cell lines. Expression of IGFBP-3 was restored by the demethylating agent 5'-aza-2'-deoxycytidine (5'-aza-dC) in a subset of NSCLC cell lines. The Sp-1/ Sp-3 binding element in the IGFBP-3 promoter, important for promoter activity, was methylated in the NSCLC cell lines which have reduced IGFBP-3 expression and the methylation of this element suppressed the binding of the Sp-1 transcription factor. A ChIP assay showed that the methylation status of the IGFBP-3 promoter influenced the binding of Sp-1, methyl-CpG binding protein-2 (MeCP2), and histone deacetylase (HDAC) to Sp-1/Sp-3 binding element, which were reversed by by 5'-aza-dC. In vitro methylation of the IGFBP-3 promoter containing the Sp-1/Sp-3 binding element significantly reduced promoter activity, which was further suppressed by the overexpression of MeCP2. This reduction in activity was rescued by 5'-aza-dC. Conclusion : These findings indicate that hypermethylation of the IGFBP-3 promoter is one mechanism by which IGFBP-3 expression is silenced and MeCP2, with recruitment of HDAC, may play a role in silencing of IGFBP-3 expression. The frequency of this abnormality is also associated with advanced stages among the patients with NSCLC, suggesting that IGFBP-3 plays an important role in lung carcinogenesis/progression and that the promoter methylation status of IGFBP-3 may be a marker for early molecular detection and/or for monitoring chemoprevention efforts.

Effects of Bcl-2 Overexpressing on the Apoptotic Cell Death Induced by HDAC Inhibitors in Human Leukemic U937 Cells (HDAC 저해제에 의한 인체 백혈병 U937 세포의 apoptosis 유발에 미치는 Bcl-2의 영향)

  • Lee, In-Hyuk;Hur, Man-Gyu;Park, Dong-Il;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.552-560
    • /
    • 2007
  • Histone deacetylase (HDAC) is overexpressed in a variety of cancers and is closely correlated with oncogenic factors. HDAC inhibitors such as trichostatin A(TSA) and sodium butyrate (Na-B) have been shown to induce apoptosis in vitro and in vivo in many cancer cells. The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death and Bcl-2 overexpression has been reported to protect against cell death. We previously reported that the apoptotic cell death of human leukemic U937 cells by TSA and Na-B treatment was associated with the down-regulation of Bcl-2 expression and activation of caspases. In the present study, we investigated the effects of Bcl-2 overexpression on the growth inhibition, cell cycle arrest and apoptosis induced by TSA and Na-B in U937 cells. TSA-induced growth inhibition, cell cycle arrest and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells however Na-B did not affected. Induction of apoptosis by TSA was accompanied by down-regulation of Bcl-2 expression, activation of caspase-3, -8 and -9, and degradation of DNA fragmentation factor/inhibitor of caspase-activated DNase, which was blocked by the overexpression of Bcl-2. Collectively, these findings suggest that ectopic expression of Bcl-2 appeared to inhibit TSA-induced apoptosis by interfering with inhibition of Bcl-2 and caspase activation.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.