• Title/Summary/Keyword: histone H4

Search Result 123, Processing Time 0.028 seconds

Comparative analysis of commonly used peak calling programs for ChIP-Seq analysis

  • Jeon, Hyeongrin;Lee, Hyunji;Kang, Byunghee;Jang, Insoon;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.42.1-42.9
    • /
    • 2020
  • Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) is a powerful technology to profile the location of proteins of interest on a whole-genome scale. To identify the enrichment location of proteins, many programs and algorithms have been proposed. However, none of the commonly used peak calling programs could accurately explain the binding features of target proteins detected by ChIP-Seq. Here, publicly available data on 12 histone modifications, including H3K4ac/me1/me2/me3, H3K9ac/me3, H3K27ac/me3, H3K36me3, H3K56ac, and H3K79me1/me2, generated from a human embryonic stem cell line (H1), were profiled with five peak callers (CisGenome, MACS1, MACS2, PeakSeq, and SISSRs). The performance of the peak calling programs was compared in terms of reproducibility between replicates, examination of enriched regions to variable sequencing depths, the specificity-to-noise signal, and sensitivity of peak prediction. There were no major differences among peak callers when analyzing point source histone modifications. The peak calling results from histone modifications with low fidelity, such as H3K4ac, H3K56ac, and H3K79me1/me2, showed low performance in all parameters, which indicates that their peak positions might not be located accurately. Our comparative results could provide a helpful guide to choose a suitable peak calling program for specific histone modifications.

Cell Cycle Regulated Expression of Subcloned Chicken H3 Histone Genes and Their 5' Flanking Sequences

  • Son, Seung-Yeol;Tae, Gun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.274-277
    • /
    • 1994
  • We subcloned two chicken H3 histone genes and transfected them into Rat 3 cell line. One contains 300 bp 5' to its cap site and the other contains 130 bp 5' to its cap site when cloned into plasm ids. Both of them showed 5' phase specific expression of their mRNA about 8 fold higher (during 5' phase) than during Gl phase. This means that only 130 bp 5' to its cap site was enough to confer cell cycle regulated expression of the latter gene. The DNA sequences of their 5' flanking region did not reveal any particular homologies or subtype-specific sequences. The DNA sequence data also showed that even though the protein coding regions of the histone genes have been conserved exceptionally well throughout evolution, their 5' untranslated regions have not been conserved as well.

  • PDF

Regulatory patterns of histone modifications to control the DNA methylation status at CpG islands

  • Jung, In-Kyung;Kim, Dong-Sup
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.4.1-4.7
    • /
    • 2009
  • Introduction: Histone modifications and DNA methylation are the major factors in epigenetic gene regulation. Especially, revealing how histone modifications are related to DNA methylation is one of the challenging problems in this field. In this paper, we address this issue and propose several plausible mechanisms for precise controlling of DNA methylation status at CpG islands. Materials and Methods: To establish the regulatory relationships, we used 38 histone modification types including H2A.Z and CTCF, and DNA methylation status at CpG islands across chromosome 6, 20, and 22 of human CD4+ T cell. We utilized Bayesian network to construct regulatory network. Results and Discussion: We found several meaningful relationships supported by previous studies. In addition, our results show that histone modifications can be clustered into several groups with different regulatory properties. Based on those findings we predicted the status of methylation level at CpG islands with high accuracy, and suggested core-regulatory network to control DNA methylation status.

Effects of Trichostatin A on In vitro Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • Jeong, Yeon Ik;Park, Chi Hun;Kim, Huen Suk;Jeong, Yeon Woo;Lee, Jong Yun;Park, Sun Woo;Lee, Se Yeong;Hyun, Sang Hwan;Kim, Yeun Wook;Shin, Taeyoung;Hwang, Woo Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1680-1688
    • /
    • 2013
  • Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly ($88.9{\rightarrow}114.4$). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

Regulation of Histone Acetylation and Methylation of the p11 Gene in the Hippocampus of Chronic Unpredictable Stress-induced Depressive Mice (장기간 예측 불가능한 스트레스를 받은 마우스 해마에서 p11 유전자의 히스톤 아세틸화 및 메틸화의 조절)

  • Seo, Mi Kyoung;Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.995-1003
    • /
    • 2021
  • Chromatin remodeling regulates gene expression through epigenetic mechanisms. Aberrations in histone modification have been associated with depression-like behaviors in animal models. Additionally, growing evidence also indicates that epigenetic modification is associated with depression. p11 (S100A10) has been implicated in the pathophysiology of depression both in human and rodent models. In the present study, we investigated alterations in histone acetylation and methylation at the promoter of the p11 gene in the hippocampus of mice subjected to chronic unpredictable stress (CUS). C57BL/6 mice were exposed to CUS daily for 3 weeks. Depression-like behaviors were measured with the forced swimming test (FST). The levels of hippocampal p11 expression were analyzed by quantitative real-time polymerase chain reaction (PCR) and Western blotting. The levels of acetylated and methylated histone H3 at the promoter of p11 were measured by chromatin immunoprecipitation followed by real-time PCR. CUS-exposed mice displayed depression-like behaviors with prolonged immobility in FST. CUS led to significant decreases in the expression of p11 at both protein and mRNA levels. Meanwhile, there was a decrease in histone H3 acetylation (Ac-H3) and H3-K4 trimethylation (H3K4met3) and an increase in H3-K27 trimethylation (H3K27met3) at the p11 promoter. These results indicate that chronic stress causes the epigenetic suppression of p11 expression in the hippocampus.

Histone Deacetylation Is Involved in Activation of CXCL10 Upon IFNγ Stimulation

  • Guo, Jin-Jun;Li, Qing-ling;Zhang, Jun;Huang, Ai-Long
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.163-167
    • /
    • 2006
  • Histone deacetylase (HDAC) activity is commonly associated with transcriptional repression. However, there is also evidence for a function in transcriptional activation. Previous studies have demonstrated a fundamental role of deacetylase activity in $IFN{\alpha}$-responsive gene transcription. In the case of type II IFN ($IFN{\gamma}$) results are controversial: some genes require HDAC activity, while transcription of others is repressed by HDAC. To investigate the effect of HDAC on transcription of an $IFN{\gamma}$-activated gene, real-time PCR was used to measure CXCL10 mRNA in Hela cells stimulated with $IFN{\gamma}$ in the presence or absence of the HDAC inhibitor TSA. Chromatin imunoprecipitation combined with real-time PCR was used to check acetylation of histone H4 and recruitment of the STAT1 complex to the ISRE locus of the CXCL10 gene. Activation of CXCL10 transcription in response to $IFN{\gamma}$ was paralleled by a decrease in histone H4 acetylation and an increase in recruitment of the STAT1 complex to the CXCL10 ISRE locus. The transcription of CXCL10 and histone H4 deacetylation were blocked by TSA, but the latter had no obvious affect on recruitment of the STAT1 complex. Our data indicate that $IFN{\gamma}$ and STAT-dependent gene transcription requires the participation of HDAC, as does the $IFN{\alpha}$-STAT pathway.

Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells (히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절)

  • Ha, Yang-Hwa;Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Epigenetic regulation is a phenomenon that changes the gene function without changing the underlying DNA sequences. Epigenetic status of chromosome is regulated by mechanisms such as histone modification, DNA modification, and RNAi silencing. In this review, we focused on histone methylation for epigenetic regulation in ES cells. Two antagonizing multiprotein complexes regulate methylation of histones to guide expression of genes in ES cells. The Polycomb repressive complex 2 (PRC2), including EED, EZH2, and SUZ12 as core factors, contributes to gene repression by increasing trimethylation of H3K27 (H3K27me3). In contrast, the Trithorax group (TrxG) complex including MLL is related to gene activation by making H3K4me3. PRC2 and TrxG accompany a variety of accessory proteins. Most prominent feature of epigenetic regulation in ES cells is a bivalent state in which H3K27me3 and H3K4me3 appear simultaneously. Concerted regulation of PRC2, TrxG complex, and H3K4- or H3K27-specific demethylases activate expression of pluripotency-related genes and suppress development-related genes in ES cells. Modified balance of the regulators also enables ES cells to efficiently differentiate to a variety of cells upon differentiating signals. More detailed insights on the epigenetic regulators and their action will lead us to better understanding and use of ES cells for future application.

Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis

  • Kim, Jun-Dae;Kim, Eunmi;Koun, Soonil;Ham, Hyung-Jin;Rhee, Myungchull;Kim, Myoung-Jin;Huh, Tae-Lin
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.580-586
    • /
    • 2015
  • While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae

  • Huh, Aram;Dubey, Akanksha;Kim, Seongbeom;Jeon, Junhyun;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.193-205
    • /
    • 2017
  • Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, which encode putative histone demethylases containing JmjC domain. Deletion of one gene, MoJMJ1, belonging to JARID group, resulted in defects in vegetative growth, asexual reproduction, appressorium formation as well as invasive growth in the fungus. Western blot analysis showed that global H3K4me3 level increased in the deletion mutant, compared to wild-type strain, indicating histone demethylase activity of MoJMJ1. Introduction of MoJMJ1 gene into ${\Delta}Mojmj1$ restored defects in pre-penetration developments including appressorium formation, indicating the importance of histone demethylation through MoJMJ1 during infection-specific morphogenesis. However, defects in penetration and invasive growth were not complemented. We discuss such incomplete complementation in detail here. Our work on MoJMJ1 provides insights into H3K4me3-mediated regulation of infection-specific development in the plant pathogenic fungus.

Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of Schizosaccharomyces pombe AAA+ ATPase Abo1

  • Kang, Yujin;Cho, Carol;Lee, Kyung Suk;Song, Ji-Joon;Lee, Ja Yil
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1-DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.