• Title/Summary/Keyword: histone H4

Search Result 123, Processing Time 0.02 seconds

Alterations in Acetylation of Histone H4 Lysine 8 and Trimethylation of Lysine 20 Associated with Lytic Gene Promoters during Kaposi's Sarcoma-Associated Herpesvirus Reactivation

  • Lim, Sora;Cha, Seho;Jang, Jun Hyeong;Yang, Dahye;Choe, Joonho;Seo, Taegun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.189-196
    • /
    • 2017
  • Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with formation of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Replication and transcription activator (RTA) genes are expressed upon reactivation of KSHV, which displays a biphasic life cycle consisting of latent and lytic replication phases. RTA protein expression results in KSHV genome amplification and successive viral lytic gene expression. Transcriptional activity of viral lytic genes is regulated through epigenetic modifications. In Raji cells latently infected with Epstein-Barr virus, various modifications, such as acetylation and methylation, have been identified at specific lysine residues in histone H4 during viral reactivation, supporting the theory that expression of specific lytic genes is controlled by histone modification processes. Data obtained from chromatin immunoprecipitation and quantitative real-time PCR analyses revealed alterations in the H4K8ac and H4K20me3 levels at lytic gene promoters during reactivation. Our results indicate that H4K20me3 is associated with the maintenance of latency, while H4K8ac contributes to KSHV reactivation in infected TREx BCBL-1 RTA cells.

Hypoxia suffocates histone demethylases to change gene expression: a metabolic control of histone methylation

  • Park, Hyunsung
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.537-538
    • /
    • 2017
  • Hypoxia affects various physiological and pathophyological processes. Hypoxia changes the expression of hypoxia-responsive genes through two main pathways. First, hypoxia activates transcription factors (TF) such as Hypoxia-inducible Factor (HIF). Second, hypoxia decreases the activity of Jumonji C domain-containing histone demethylases (JMJDs) that require $O_2$ and ${\alpha}$-Ketoglutarate (${\alpha}$-KG) as substrates. The JMJDs affect gene expression through their regulation of active or repressive histone methylations. Profiling of H3K4me3, H3K9me3, and H3K27me3 under both normoxia and hypoxia identified 75 TFs whose binding motifs were significantly enriched in the methylated regions of the genes. TFs showing similar binding strengths to their target genes might be under the 'metabolic control' which changes histone methylation and gene expression by instant changing catalytic activities of resident histone demethylases.

Global Histone H4 Acetylation of IGF1 and GH Genes in Lungs of Somatic Cell Cloned Calves

  • Zhang, L.;Wang, S.H.;Fan, B.L.;Dai, Y.P.;Fei, J.;Li, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1090-1094
    • /
    • 2006
  • Histone acetylation modification is one key mechanism in the regulation of gene activation. In this study, we investigated the global levels of histone H4 acetylation of insulin like growth factor I (IGF1) and growth hormone (GH) genes in the lungs of two somatic cell cloned calves. Data showed the levels of histone H4 acetylation of IGF1 and GH genes vary widely within different gene regions, and, in almost all regions of the two genes, acetylation levels are lower in the aberrant clone than in the normal clone. Thus we suggest that inefficient epigenetic reprogramming in the clone may affect the balance between acetylation and deacetylation, which will affect normal growth and development. These findings will also have implications for improvement of cloning success rates.

Histone H3K27 Modifications and Gene Transcription (히스톤 H3K27 변형과 유전자 전사)

  • Kim, Ae-Ri
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.616-620
    • /
    • 2011
  • Lysine residues of histone H3 and H4 are covalently modified in the chromatin of eukaryotic cells. Lysine 27 in histone H3 was acetylated (H3K27ac) or methylated at three levels; mono-, di-, and trimethylation (H3K27me1, H3K27me2, and H3K27me3). These modifications at H3K27 were related with gene transcription and/or chromatin structure in distinct patterns. Generally, H3K27ac and H3K27me1 were enriched in active chromatin, such as the locus control region or transcriptionally active genes, while transcriptionally inactive genes were highly marked by H3K27me2 and H3K27me3. These modifications appear to have been catalyzed by distinct histone-modifying enzymes. Recent studies suggest that the four kinds of modifications at H3K27 have inter-correlation in gene transcription or chromatin structure formation.

Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells

  • Chung, Sangwon;Hwang, Jin-Taek;Park, Jae Ho;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.196-204
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease triggered by epigenetic alterations, including lysine acetylation at histone or non-histone proteins, affecting the stability or transcription of lipogenic genes. Although various natural dietary compounds have anti-lipogenic effects, their effects on the acetylation status and lipid metabolism in the liver have not been thoroughly investigated. MATERIALS/METHODS: Following oleic-palmitic acid (OPA)-induced lipid accumulation in HepG2 cells, the acetylation status of histone and non-histone proteins, HAT activity, and mRNA expression of representative lipogenic genes, including $PPAR{\gamma}$, SREBP-1c, ACLY, and FASN, were evaluated. Furthermore, correlations between lipid accumulation and HAT activity for 22 representative natural food extracts (NExs) were evaluated. RESULTS: Non-histone protein acetylation increased following OPA treatment and the acetylation of histones H3K9, H4K8, and H4K16 was accelerated, accompanied by an increase in HAT activity. OPA-induced increases in the mRNA expression of lipogenic genes were down-regulated by C-646, a p300/CBP-specific inhibitor. Finally, we detected a positive correlation between HAT activity and lipid accumulation (Pearson's correlation coefficient = 0.604) using 22 NExs. CONCLUSIONS: Our results suggest that NExs have novel applications as nutraceutical agents with HAT inhibitor activity for the prevention and treatment of NAFLD.

NMR Studies on the N-terminal Acetylation Domain of Histone H4

  • Bang, Eun Jeong;Lee, Chang Hun;Yun, Jong Bok;Cheong, Ju Hui;Lee, Dae Yun;Lee, Won Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.507-513
    • /
    • 2001
  • Histones, nuclear proteins that interact with DNA to form nucleosomes, are essential for both the regulation of transcription and the packaging of DNA within chromosomes. The N-terminal domain of histone H4 which contains four acetylation sites at lysines, may play a separate role in chromatin structure from the remainder of the H4 chain. NMR data suggest that H4NTP peptide does have relating disordered structure at physiological pH, however, it has a defined structure at lower pH conditions. The solution structure calculated from NMR data shows a well structured region comprising residues of Val21-Asp24. In addition, our results suggest that the H4NTP prefers an extended backbone conformation at acetylation sites, however, it (especially Lys 12 ) became more defined structures after acetylation for its optimum function.

Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3

  • Kobza, Keyna;Sarath, Gautam;Zempleni, Janos
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.310-315
    • /
    • 2008
  • BirA ligase is a prokaryotic ortholog of holocarboxylase synthetase (HCS) that can biotinylate proteins. This study tested the hypothesis that BirA ligase catalyzes the biotinylation of eukaryotic histones. If so, this would mean that recombinant BirA ligase is a useful surrogate for HCS in studies of histone biotinylation. The biological activity of recombinant BirA ligase was confirmed by enzymatic biotinylation of p67. In particular, it was found that BirA ligase biotinylated both calf thymus histone H1 and human bulk histone extracts. Incubation of recombinant BirA ligase with H3-based synthetic peptides showed that lysines 4, 9, 18, and 23 in histone H3 are the targets for the biotinylation by BirA ligase. Modification of the peptides (e.g., serine phosphorylation) affected the subsequent biotinylation by BirA ligase, suggesting crosstalk between modifications. In conclusion, this study suggests that prokaryotic BirA ligase is a promiscuous enzyme and biotinylates eukaryotic histones. Moreover the biotinylation of histones by BirA ligase is consistent with the proposed role of human HCS in chromatin.

Identification of small molecules that inhibit the histone chaperone Asf1 and its chromatin function

  • Seol, Ja-Hwan;Song, Tae-Yang;Oh, Se Eun;Jo, Chanhee;Choi, Ahreum;Kim, Byungho;Park, Jinyoung;Hong, Suji;Song, Ilrang;Jung, Kwan Young;Yang, Jae-Hyun;Park, Hwangseo;Ahn, Jin-Hyun;Han, Jeung-Whan;Cho, Eun-Jung
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.685-690
    • /
    • 2015
  • The eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3. To elucidate the role of Asf1 in the modulation of chromatin structure, we screened and identified small molecules that inhibit Asf1 and H3K56 acetylation without affecting other histone modifications. These pyrimidine-2,4,6-trione derivative molecules inhibited the nucleosome assembly mediated by Asf1 in vitro, and reduced the H3K56 acetylation in HeLa cells. Furthermore, production of HSV viral particles was reduced by these compounds. As Asf1 is implicated in genome integrity, cell proliferation, and cancer, current Asf1 inhibitor molecules may offer an opportunity for the therapeutic development for treatment of diseases.

Role of the Promoter Region of a Chicken H3 Histone Gene in Its Cell Cycle Dependent Expression

  • Son, Seung-Yeol
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.345-349
    • /
    • 1999
  • We fused the promoter region of an H3.2 chicken histone gene, whose expression is dependent on the cell cycle, to the 5' coding region of an H3.3 chicken histone gene, which is expressed constitutively at a low level throughout the cell cycle. This fusion gene showed a cell cycle-regulated pattern of expression, but in a different manner. The mRNA level of the fusion gene increase during the S phase of the cell cycle by about 3.7-fold at 6 h and 2.7-fold at 12 h after the serum stimulation. The mRNA level of the intact H3.2 gene, however, increased by an average of 3.6-fold at 6 h and 8.7-fold at 12 h. This different expression pattern might be due to the differences in their 3' end region that is responsible for mRNA stability. The 3' end of the H3.2 mRNA contains a stem-loop structure, instead of a poly(A) tail present in the H3.3 mRNA. We also constructed a similar fusion gene using a H3.3 histone gene whose introns had been eliminated to rule out the possibility of involvement of the introns in cell cycle-regulated expression. The expression of this fusion gene was almost identical to the fusion gene made previously. These results indicate that the promoter region of the H3.2 gene is only partially responsible for its expression during the S phase of the cell cycle.

  • PDF

KAT8/MOF-Mediated Anti-Cancer Mechanism of Gemcitabine in Human Bladder Cancer Cells

  • Zhu, Huihui;Wang, Yong;Wei, Tao;Zhao, Xiaoming;Li, Fuqiang;Li, Yana;Wang, Fei;Cai, Yong;Jin, Jingji
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.184-194
    • /
    • 2021
  • Histone acetylation is a well-characterized epigenetic modification controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Imbalanced histone acetylation has been observed in many primary cancers. Therefore, efforts have been made to find drugs or small molecules such as HDAC inhibitors that can revert acetylation levels to normal in cancer cells. We observed dose-dependent reduction in the endogenous and exogenous protein expression levels of KAT8 (also known as human MOF), a member of the MYST family of HATs, and its corresponding histone acetylation at H4K5, H4K8, and H4K16 in chemotherapy drug gemcitabine (GEM)-exposed T24 bladder cancer (BLCA) cells. Interestingly, the reduction in MOF and histone H4 acetylation was inversely proportional to GEM-induced γH2AX, an indicator of chemotherapy drug effectiveness. Furthermore, pGL4-MOF-Luc reporter activities were significantly inhibited by GEM, thereby suggesting that GEM utilizes an MOF-mediated anti-BLCA mechanism of action. In the CCK-8, wound healing assays and Transwell® experiments, the additive effects on cell proliferation and migration were observed in the presence of exogenous MOF and GEM. In addition, the promoted cell sensitivity to GEM by exogenous MOF in BLCA cells was confirmed using an Annexin V-FITC/PI assay. Taken together, our results provide the theoretical basis for elucidating the anti-BLCA mechanism of GEM.