• 제목/요약/키워드: histone H4

검색결과 123건 처리시간 0.022초

밤나무 근권토양에서 분리한 Ilyonectria radicicola 균주의 인삼에 대한 병원성 및 유전적 분석 (Pathgenicity on Ginseng and Sequence Assays of Ilyonectria radicicola Isolated from Chestnut Rhizosphere Soils)

  • 서문원;송정영;김선익;오상근;김홍기
    • 한국약용작물학회지
    • /
    • 제26권4호
    • /
    • pp.302-307
    • /
    • 2018
  • Background: A soil-borne pathogenic fungus, Ilyonectria radicicola (Cylindrocarpon destructans) causes root rot on ginseng (Panax ginseng C. A. Meyer) and is known to attack many other plants. The Nectria/Neonectria radicicola complex has been renamed as the I. radicicola complex after analysis of its multi-gene relatedness and morphological characteristics. The fungi in this complex have been reclassified into 16 species under the genus Ilyonectria based on characteristics analysis Methods and Results: To obtain useful data from the Korean ginseng root rot, I. radicicola was isolated from the rhizosphere soils of the chestnut tree. They were identified through a pathogenicity test and a survey of the morphological features. The existence of I. radicicola in soil samples was confirmed by PCR detections using nested PCR with species-specific primer sets. These were subsequenctly isolated on semi-selective media from PCR-positive soils. Genetic analysis of the I. radicicola complex containing these pathogens was done by comparing the DNA sequences of the histone h3 region. These isolates originating from the rhizosphere soils of chestnut constituted a clade with other closely related species or I. radicicola isolates originating from ginseng or other host plants, respectively. Additionally, the pathogenicity tests to analyze the characteristics of these I. radicicola isolates revealed that they caused weakly virulent root rot on ginseng. Conclusions: This is the first study reporting that I. radicicola isolates from chestnut rhizosphere soils can attack ginseng plant in Korea. Thus, these results are expected to provide informations in the selection of suitable fields for ginseng cultivation.

Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells

  • Kim, Taewan;Jeong, Kwanyoung;Kim, Eunji;Yoon, Kwanghyun;Choi, Jinmi;Park, Jae Hyeon;Kim, Jae-Hwan;Kim, Hyung Sik;Youn, Hong-Duk;Cho, Eun-Jung
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.202-215
    • /
    • 2022
  • The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.

약침용봉독액(藥鍼用蜂毒液)이 흑색종세포(黑色腫細胞)에 미치는 항암효과(抗癌效果)에 대(對)한 분자생물학적(分子生物學的) 연구(硏究) (Molecular Biological Study of Anti-cancer Effects of Bee Venom on Human Melanoma Cell)

  • 박찬렬;남상수;김창환;이재동;강성길;이윤호;안병철
    • Journal of Acupuncture Research
    • /
    • 제17권2호
    • /
    • pp.169-186
    • /
    • 2000
  • To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability, apoptosis, and cell cycle were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, activity of caspase-3 protease activity assay, and immunocytometric analysis of PCNA. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis- and cell cycle-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [$^3H$]thymidine release assay, and flow cytometric analysis of sub $G_1$ fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and $Bcl-X_L$ were down-regulated whereas Bax was up-regulated by bee venom treatment. 5. In flow cytometric analysis of cell cycle and immunocytometric analysis of PCNA expression, cell numbers of $G_1$ phase was increased by a dose-dependant manner. 6. In quantitative RT-PCR analysis of the cell cycle-related genes, p21, p27, and p57 were increased, while Cyclin D1, CDK4, c-Myc, c-Fos, and Histone H3 were decreased. In contrast, there were no remarkable changes in expression levels of CDC2 and c-Jun.

  • PDF

ChIP-seq 라이브러리 제작 및 Galaxy 플랫폼을 이용한 NGS 데이터 분석 (ChIP-seq Library Preparation and NGS Data Analysis Using the Galaxy Platform)

  • 강유진;강진;김예운;김애리
    • 생명과학회지
    • /
    • 제31권4호
    • /
    • pp.410-417
    • /
    • 2021
  • NGS (Next-generation sequencing), 즉 차세대염기서열분석은 유전체 수준의 방대한 DNA를 작은 절편으로 만들어서 그 절편들의 염기서열들을 동시에 읽어내는 기법이다. 현재 다양한 생명체의 유전체 염기서열 분석부터 cDNA (complementary DNA)나 ChIPed DNA (chromatin immunoprecipitated DNA)를 분석하는데 이 NGS 기법을 사용하고 있으며, 이 때 얻어진 데이터를 적절히 처리하고 분석하는 일은 생물학적으로 유의미한 결과를 얻기 위하여 중요하다. 하지만 대용량 데이터의 저장 및 활용, 그리고 컴퓨터 프로그래밍 바탕의 데이터 분석은 실험을 수행하는 일반 생물학자들에게 어려운 일이다. Galaxy 플랫폼은 다양한 NGS 데이터 분석 tool을 무료로 제공하는 웹 서비스이며, 생물정보학이나 프로그래밍에 대한 전문지식이 없는 연구자들에게 웹 브라우저만을 이용하여 데이터를 분석할 수 있는 환경을 제공한다. 본 논문에서는 ChIP-seq (chromatin immunoprecipitation-sequencing) 수행을 위한 라이브러리 제작 과정 및 Galaxy 플랫폼을 이용한 ChIP-seq 데이터 분석 과정을 설명하고, K562 세포주에서 수행한 히스톤 H3K4me1 ChIP-seq 결과가 public 데이터와 일치함을 보여준다. 따라서 Galaxy 플랫폼을 활용한 NGS 데이터 분석은 생물정보학에 대한 손쉬운 접근 방법을 제공할 것으로 기대된다.

The first review study on association of DNA methylation with gastric cancer in Iranian population

  • Shahbazi, Mahsa;Yari, Kheirollah;Rezania, Niloufar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2499-2506
    • /
    • 2016
  • Background: Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Several environmental, genetic and epigenetic factors have been suggested to have a role in GC development. Epigenetic mechanisms like histone changes and promoter hyper-methylation are now being increasingly studied. Associations between methylation of many gene promoters with the risk of gastric cancer have been investigated worldwide. Such aberrant methylation may result in silencing of specific genes related to cell cycling, cell adhesion, apoptosis and DNA repair. Thus this molecular mechanism might have a key role in proliferation and migration of cancerous cells. Materials and Methods: In this review article we included studies conducted on DNA methylation and gastric cancer in Iranian populations. Using Science direct, Pubmed/PMC, Springer, Wiley online library and SciELO databases, all published data until 31 January 2016 were gathered. We also searched Science direct data base for similar investigations around the world to make a comparison between Iran and other countries. Results: By searching these databases, we found that the association between methylation of seven gene promoters and gastric cancer had been studied in Iran until 31 January 2016. These genes were p16, hLMH1, E-cadherin, CTLA4, $THR{\beta}$, mir9 and APC. Searching in science direct database also showed that 92 articles had been published around the world till January 2016. Our investigation revealed that despite the importance of GC and its high prevalence in Iran, the methylation status of only a few gene promoters has been studied so far. More studies with higher sample numbers are needed to reveal the relation of methylation status of gene promoters to gastric cancer in Iran. Conclusions: Further studies will be helpful in identifying associations of DNA methylation in candidate genes with gastric cancer risk in Iranian populations.

Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis

  • Zheng, Jian;Piao, Mei Jing;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제21권4호
    • /
    • pp.270-276
    • /
    • 2013
  • Fucoxanthin is an important carotenoid derived from edible brown seaweeds and is used in indigenous herbal medicines. The aim of the present study was to examine the cytoprotective effects of fucoxanthin against hydrogen peroxide-induced cell damage. Fucoxanthin decreased the level of intracellular reactive oxygen species, as assessed by fluorescence spectrometry performed after staining cultured human HaCaT keratinocytes with 2',7'-dichlorodihydrofluorescein diacetate. In addition, electron spin resonance spectrometry showed that fucoxanthin scavenged hydroxyl radical generated by the Fenton reaction in a cell-free system. Fucoxanthin also inhibited comet tail formation and phospho-histone H2A.X expression, suggesting that it prevents hydrogen peroxide-induced cellular DNA damage. Furthermore, the compound reduced the number of apoptotic bodies stained with Hoechst 33342, indicating that it protected keratinocytes against hydrogen peroxide-induced apoptotic cell death. Finally, fucoxanthin prevented the loss of mitochondrial membrane potential. These protective actions were accompanied by the down-regulation of apoptosis-promoting mediators (i.e., B-cell lymphoma-2-associated ${\times}$ protein, caspase-9, and caspase-3) and the up-regulation of an apoptosis inhibitor (B-cell lymphoma-2). Taken together, the results of this study suggest that fucoxanthin defends keratinocytes against oxidative damage by scavenging ROS and inhibiting apoptosis.

Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts

  • Zhou, Dongjie;Li, Xiao-Han;Lee, Song‑Hee;Heo, Geun;Cui, Xiang-Shun
    • 한국동물생명공학회지
    • /
    • 제37권1호
    • /
    • pp.17-26
    • /
    • 2022
  • Alpha-linolenic acid is an important polyunsaturated fatty acid that exhibits anticancer, anti-inflammatory, and antioxidative effects. In this study, we investigated the protective effects of alpha-linolenic acid on the cell proliferation and differentiation of C2C12 cells under essential amino acid-deficient conditions. Different concentrations of alpha-linolenic acid and essential amino acids were added to the growth and differentiation media. The concentrations of 10 µM of alpha-linolenic acid and 2% essential amino acid were chosen for subsequent experiments. Supplementation with alpha-linolenic acid and essential amino acids improved the proliferation and differentiation of C2C12 cells and significantly increased the mRNA levels of catalase, superoxide dismutase, B-cell lymphoma-2, and beclin-1 as well as the protein levels of PPARγ coactivator-1α compared to those in the controls. Moreover, supplementation with alpha-linolenic acid and essential amino acids reduced the levels of phosphorylated H2A.X variant histone, Bcl-2-associated X, p53, and light chain 3 during C2C12 cell proliferation, and increased the expression levels of myogenic factors 4 (myogenin) and 5 during C2C12 cell differentiation. Overall, we determined that alpha-linolenic acid and essential amino acids maintained the cell proliferation and differentiation of C2C12 cells via their anti-oxidative, anti-apoptotic, and anti-autophagic effects.

H2AX의 BRCA1 NLS domain과 BARD1 BRCT domain 각각과의 in vitro 상호 결합 (H2AX Directly Interacts with BRCA1 and BARD1 via its NLS and BRCT Domain Respectively in vitro)

  • 배승희;이선미;김수미;최태부;김차순;성기문;진영우;안성관
    • KSBB Journal
    • /
    • 제24권4호
    • /
    • pp.403-409
    • /
    • 2009
  • 본 연구에서는 H2AX의 생리학적인 기능 및 분자세포 생물학적 기전 해석에 대한 보다 명확한 정보를 제시하고자, H2AX 관련 단백질들을 literature review 및 생물정보학적인 기술을 이용하여 최적의 결합 단백질체를 40개를 예측하곤 이들 가운데 상호작용 가능성이 높은 BRCA1와 BARD1 단백질을 선별하여 in vitro 결합실험을 통해 이를 증명하였다. 이들 두 가지의 유전자를 발굴하여, 클로닝하였다. 클로닝된 유전자를 이용하여 두 가지 단백질을 발현 및 정제하였으며, 단백질들의 자체적인 구조에 의한 결합능력을 판단하기 위해 in vitro binding assay법을 실시하였다. 단백질의 구조적 안정과 비특이적 결합을 억제하는 detergent만이 포함된 상태에서, 구조학적 및 물리학적 상호 결합의 유무를 판정할 수 있게 하였으며, BRCA1과 BARD1은 모두 H2AX에 결합함을 확인하였다. 이런 실험결과를 바탕으로 각각의 단백질에 대해 H2AX와의 최적 결합 부위를 알아내기 위해 각 유전자의 domain을 생물정보학적으로 분석하였다. 이에 RING domain, NES, NLS 및 BRCT domain에 해당하는 유전자 부분을 새로 클로닝하여, 다시 in vitro 결합실험 및 실험결과에 대한 literature review를 통한 분석을 실시한 결과, H2AX는 BRCA1의 NLS, BARD1의 BRCT domain 부분과 결합하는 것을 확인하였다. H2AX에 대한 BRCA1과 BARD1과의 결합은 DNA repair에 있어 BRCA1의 NLS와 BARD1의 BRCT domain을 통해 H2AX foci의 관련 세포 신호전달 기전에 중요한 역할을 하여 전체적으로 genomic stability에 영향을 미칠 가능성이 농후할 것으로 사료된다.

미토콘드리아 억제제 rotenone에 의한 쥐의 뇌실 하 영역 신경 줄기 세포의 증식과 신경 세포로의 분화 억제 (Inhibition of Proliferation and Neurogenesis of Mouse Subventricular Zone Neural Stem Cells by a Mitochondrial Inhibitor Rotenone)

  • 박기엽;김만수
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1397-1405
    • /
    • 2018
  • 미토콘드리아는 세포안에서 에너지 공급, 칼슘 이온 저장, 활성산소 생성, 세포 자살과 같은 다양한 기능을 수행한다. 이러한 기능을 통해, 미토콘드리아는 줄기세포의 유지, 증식, 그리고 분화에 관여한다. 뇌에서 뇌실 하 영역(subventricular zone, SVZ)에는 일평생 새로운 신경세포를 생성하는 신경줄기세포(neural stem cell, NSC)가 존재한다. 하지만, SVZ NSCs에서 미토콘드리아의 역할에 대한 연구는 많이 알려져 있지 않다. 이번 연구에서 우리는 미토콘드리아의 complex I 저해제인 rotenone이 SVZ NSCs의 증식과 분화를 다른 방식으로 방해한다는 것을 보여주었다. 증식 중인 신경줄기세포에서, rotenone은 세포분열을 감소시켰는데, 이때 세포분열은 히스톤 H3에 인산기가 붙어있는 지를 측정하여 확인하였다. Rotenone을 50 nM 농도로 증식 중인 신경줄기세포에 처리했을 때, 세포사멸은 발생하지 않았다. 한편, 분화 중인 신경줄기세포에 rotenone을 처리한 경우, 신경세포와 희소 돌기아교 세포(oligodendrocyte)으로의 분화가 억제되었고, glial fibrillary acidic protein (GFAP)를 발현하는 성상세포(astrocyte)에는 영향이 없었다. 흥미롭게도, 4-6일 동안의 분화 과정 동안 rotenone이 처리된 신경줄기세포에서 대조군 보다 더 많은 세포 수가 관찰 되었는데, 이는 증식 과정 중의 rotenone의 효과와 다른 것이다. 이에, 우리는 rotenone이 세포 자살은 감소시켰으나, 세포 분열에는 영향을 끼치지 않았음을 관찰하였다. 세포 자살의 경우는 cleaved caspase-3를 측정함으로써 확인하였다. 이러한 결과들은 SVZ 신경줄기세포의 증식과 분화 모두에 제대로 작동하는 미토콘드리아가 있어야 함을 제안하고 있다. 게다가, 이러한 과정에서 미토콘드리아는 세포 분열과 세포자살에 관여할 수도 있을 것이다.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.