• Title/Summary/Keyword: histograms

Search Result 365, Processing Time 0.024 seconds

A Basic Study on the System of Converting Color Image into Sound (컬러이미지-소리 변환 시스템에 관한 기초연구)

  • Kim, Sung-Ill;Jung, Jin-Seung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.251-256
    • /
    • 2010
  • This paper aims for developing the intelligent robot emulating human synesthetic skills which associate a color image with sound, so that we are able to build an application system based on the principle of mutual conversion between color image and sound. As the first step, in this study, we have tried to realize a basic system using the color image to sound conversion. This study describes a new conversion method to convert color image into sound, based on the likelihood in the physical frequency information between light and sound. In addition, we present the method of converting color image into sound using color model conversion as well as histograms in the converted color model. In the basis of the method proposed in this study, we built a basic system using Microsoft Visual C++(ver. 6.0). The simulation results revealed that the hue, saturation and intensity elements of a input color image were converted into F0, harmonic and octave elements of a sound, respectively. The converted sound elements were synthesized to generate a sound source with WAV file format using Csound toolkit.

Selectivity Estimation for Spatio-Temporal a Overlap Join (시공간 겹침 조인 연산을 위한 선택도 추정 기법)

  • Lee, Myoung-Sul;Lee, Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.54-66
    • /
    • 2008
  • A spatio-temporal join is an expensive operation that is commonly used in spatio-temporal database systems. In order to generate an efficient query plan for the queries involving spatio-temporal join operations, it is crucial to estimate accurate selectivity for the join operations. Given two dataset $S_1,\;S_2$ of discrete data and a timestamp $t_q$, a spatio-temporal join retrieves all pairs of objects that are intersected each other at $t_q$. The selectivity of the join operation equals the number of retrieved pairs divided by the cardinality of the Cartesian product $S_1{\times}S_2$. In this paper, we propose aspatio-temporal histogram to estimate selectivity of spatio-temporal join by extending existing geometric histogram. By using a wide spectrum of both uniform dataset and skewed dataset, it is shown that our proposed method, called Spatio-Temporal Histogram, can accurately estimate the selectivity of spatio-temporal join. Our contributions can be summarized as follows: First, the selectivity estimation of spatio-temporal join for discrete data has been first attempted. Second, we propose an efficient maintenance method that reconstructs histograms using compression of spatial statistical information during the lifespan of discrete data.

SOSiM: Shape-based Object Similarity Matching using Shape Feature Descriptors (SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭)

  • Noh, Chung-Ho;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.2
    • /
    • pp.73-83
    • /
    • 2009
  • In this paper we propose an object similarity matching method based on shape characteristics of an object in an image. The proposed method extracts edge points from edges of objects and generates a log polar histogram with respect to each edge point to represent the relative placement of extracted points. It performs the matching in such a way that it compares polar histograms of two edge points sequentially along with edges of objects, and uses a well-known k-NN(nearest neighbor) approach to retrieve similar objects from a database. To verify the proposed method, we've compared it to an existing Shape-Context method. Experimental results reveal that our method is more accurate in object matching than the existing method, showing that when k=5, the precision of our method is 0.75-0.90 while that of the existing one is 0.37, and when k=10, the precision of our method is 0.61-0.80 while that of the existing one is 0.31. In the experiment of rotational transformation, our method is also more robust compared to the existing one, showing that the precision of our method is 0.69 while that of the existing one is 0.30.

Mathematical Connection and Teaching Methods of Frequency Density (도수밀도(Frequency density)의 수학적 연결성과 지도방안)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.4
    • /
    • pp.509-521
    • /
    • 2020
  • This study began with the discovery of the concept of frequency density in Singapore textbooks and in a set of subject contents of the UK's General Certificate of Secondary Education. To understand the mathematical meaning of frequency density, the mathematical connection of frequency density was considered in terms of mathematics internal connections and mathematics external connections. In addition, the teaching method of frequency density was introduced. In terms of mathematical internal connections, the connections among the probability density function, relative frequency density, and frequency density in high school statistics were examined. Regarding mathematical external connections, the connection with the density concept in middle school science was analyzed. Based on the mathematical connection, the study suggested the need to introduce the frequency density concept. For the teaching method of frequency density, the Singapore secondary mathematics textbook was introduced. The Singapore textbook introduces frequency density to correctly represent and accurately interpret data in histograms with unequal class intervals. Therefore, by introducing frequency density, Korea can consistently teach probability density function, relative frequency density, and frequency density, emphasizing the mathematical internal connections among them and considering the external connections with the science subject. Furthermore, as a teaching method of frequency density, we can consider the method provided in the Singapore textbook.

3D Film Image Classification Based on Optimized Range of Histogram (히스토그램의 최적폭에 기반한 3차원 필름 영상의 분류)

  • Lee, Jae-Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.71-78
    • /
    • 2021
  • In order to classify a target image in a cluster of images, the difference in brightness between the object and the background is mainly concerned, which is not easy to classify if the shape of the object is blurred and the sharpness is low. However, there are a few studies attempted to solve these problems, and there is still the problem of not properly distinguishing between wrong pattern and right pattern images when applied to actual data analysis. In this paper, we propose an algorithm that classifies 3D films into sharp and blurry using the width of the pixel values histogram. This algorithm determines the width of the right and wrong images based on the width of the pixel distributions. The larger the width histogram, the sharp the image, while the shorter the width histogram the blurry the image. Experiments show that the proposed algorithm reflects that the characteristics of these histograms allows classification of all wrong images and right images. To determine the reliability and validity of the proposed algorithm, we compare the results with the other obtained from preprocessed 3D films. We then trained the 3D films using few-shot learning algorithm for accurate classification. The experiments verify that the proposed algorithm can perform higher without complicated computations.

3D Film Image Inspection Based on the Width of Optimized Height of Histogram (히스토그램의 최적 높이의 폭에 기반한 3차원 필름 영상 검사)

  • Jae-Eun Lee;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • In order to classify 3D film images as right or wrong, it is necessary to detect the pattern in a 3D film image. However, if the contrast of the pixels in the 3D film image is low, it is not easy to classify as the right and wrong 3D film images because the pattern in the image might not be clear. In this paper, we propose a method of classifying 3D film images as right or wrong by comparing the width at a specific frequency of each histogram after obtaining the histogram. Since, it is classified using the width of the histogram, the analysis process is not complicated. From the experiment, the histograms of right and wrong 3D film images were distinctly different, and the proposed algorithm reflects these features, and showed that all 3D film images were accurately classified at a specific frequency of the histogram. The performance of the proposed algorithm was verified to be the best through the comparison test with the other methods such as image subtraction, otsu thresholding, canny edge detection, morphological geodesic active contour, and support vector machines, and it was shown that excellent classification accuracy could be obtained without detecting the patterns in 3D film images.

Acquisition and Analysis of Environmental Data for Smart Farm (스마트팜 생육환경 데이터 획득 및 분석)

  • Seok-Ho Han;Hoon-Seok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.130-137
    • /
    • 2023
  • Smart farms, which have been receiving attention as a solution to recent rural problems, refer to technologies that optimize the growing environment of crops and increase the productivity and quality of crops through efficient management. If the relationships between environmental data in smart farms are analyzed, additional productivity enhancement and crop management will be possible. In this paper, we propose a method for acquiring and analyzing nine environmental data, including temperature, humidity, CO2, soil temperature, soil moisture, insolation, soil EC, EC, and pH. Data acquisition is done through RS-485 communication between the main board and the sensor board and stored in the database after acquisition. The stored data is downloaded in Excel sheet format and analyzed through histograms, data charts, and correlation heatmaps. First, we analyze the distribution of total, day, and night data through histogram analysis, and identifiy the average, median, minimum, and maximum values by month through data chart analysis separating day and night to see how the data changes by month. Finally, we analyze the correlation of the data through a correlation heatmap analysis separating day and night. The results show a very strong positive correlation between temperature and soil temperature and soil EC and EC during the day, and a very strong positive correlation between temperature and soil temperature and soil EC and EC at night, and a strong negative correlation between temperature and soil EC.

A Study on Face Contour Line Extraction using Adaptive Skin Color (적응적 스킨 칼라를 이용한 얼굴 경계선 추출에 관한 연구)

  • Yu, Young-Jung;Park, Seong-Ho;Moon, Sang-Ho;Choi, Yeon-Jun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.383-391
    • /
    • 2017
  • In image processing, image segmentation has been studied by various methods in a long time. Image segmentation is the process of partitioning a digital image into multiple objects and face detection is a typical image segmentation field being used in a variety of applications that identifies human faces in digital images. In this paper, we propose a method for extracting the contours of faces included in images. Using the Viola-Jones algorithm, to do this, we detect the approximate locations of faces from images. But, the Viola-Jones algorithm could detected the approximate location of face not the correct position. In order to extract a more accurate face region from image, we use skin color in this paper. In details, face region would be extracted using the analysis of horizontal and vertical histograms on the skin area. Finally, the face contour is extracted using snake algorithm for the extracted face area. In this paperr, a modified snake energy function is proposed for face contour extraction based snake algorithm proposed by Williams et al.[7]

Analysis of Color Characteristics of Marine Oil Spills Using PlanetScope Images (PlanetScope 영상을 이용한 해양 유출유의 색상 특성 분석)

  • Jonggu Kang;Youjeong Youn;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.875-883
    • /
    • 2023
  • In this letter, we used PlanetScope imagery to conduct experiments on the color characteristics for oil type classification of marine oil spills through Red-Green-Blue (RGB) histogram analysis. The histograms of marine oil spills can be divided into three categories (dark black tones, light silver tones, and light rainbow tones) according to the distribution of pixel values in each band. Thick oil layers with dark black tones can be classified as heavy oil, while thin oil layers with light silver and rainbow tones can be classified as light oil. As more images are analyzed in the future, these oil spill detection and classification methods will become more generalized and reliable.

Prognostic Prediction Based on Dynamic Contrast-Enhanced MRI and Dynamic Susceptibility Contrast-Enhanced MRI Parameters from Non-Enhancing, T2-High-Signal-Intensity Lesions in Patients with Glioblastoma

  • Sang Won Jo;Seung Hong Choi;Eun Jung Lee;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1369-1378
    • /
    • 2021
  • Objective: Few attempts have been made to investigate the prognostic value of dynamic contrast-enhanced (DCE) MRI or dynamic susceptibility contrast (DSC) MRI of non-enhancing, T2-high-signal-intensity (T2-HSI) lesions of glioblastoma multiforme (GBM) in newly diagnosed patients. This study aimed to investigate the prognostic values of DCE MRI and DSC MRI parameters from non-enhancing, T2-HSI lesions of GBM. Materials and Methods: A total of 76 patients with GBM who underwent preoperative DCE MRI and DSC MRI and standard treatment were retrospectively included. Six months after surgery, the patients were categorized into early progression (n = 15) and non-early progression (n = 61) groups. We extracted and analyzed the permeability and perfusion parameters of both modalities for the non-enhancing, T2-HSI lesions of the tumors. The optimal percentiles of the respective parameters obtained from cumulative histograms were determined using receiver operating characteristic (ROC) curve and univariable Cox regression analyses. The results were compared using multivariable Cox proportional hazards regression analysis of progression-free survival. Results: The 95th percentile value (PV) of Ktrans, mean Ktrans, and median Ve were significant predictors of early progression as identified by the ROC curve analysis (area under the ROC curve [AUC] = 0.704, p = 0.005; AUC = 0.684, p = 0.021; and AUC = 0.670, p = 0.0325, respectively). Univariable Cox regression analysis of the above three parametric values showed that the 95th PV of Ktrans and the mean Ktrans were significant predictors of early progression (hazard ratio [HR] = 1.06, p = 0.009; HR = 1.25, p = 0.017, respectively). Multivariable Cox regression analysis, which also incorporated clinical parameters, revealed that the 95th PV of Ktrans was the sole significant independent predictor of early progression (HR = 1.062, p < 0.009). Conclusion: The 95th PV of Ktrans from the non-enhancing, T2-HSI lesions of GBM is a potential prognostic marker for disease progression.