• Title/Summary/Keyword: hippocampus cell

Search Result 231, Processing Time 0.028 seconds

Fas/FasL expression in the hippocampus of neonatal rat brains follwing hypoxic-ischemic injury (저산소성 허혈성 손상을 받은 신생 흰쥐 뇌 해마에서 Fas와 FasL 단백 발현)

  • Chang, Young Pyo;Kim, Myeung Ju;Lee, Young Il;Im, Ik Je;Cho, Jae Ju;Kim, Jong Wan;Yeo, Sung Moon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • Purpose : Fas is a cell surface receptor that transduces apoptotic death signals. Interaction of extracelluar domain of Fas with Fas ligand(FasL) triggers the apoptotic process in many diseases. We investigated the expression of Fas and FasL in the hippocampus of 7-day-old newborn rat brains following hypoxia-ischemia injury. Methods : The 7-days-old newborn rats were exposed to 8 percent oxygen for two hours after the ligation of right common carotid arteries. The newborn rats were killed and their brains were removed at 12, 14 and 48 hours after hypoxic-ischemic injury. The expressions of Fas and FasL of the right hippocampus were observed by western blotting and immunofluorescent staining. Results : Fas and FasL were strongly expressed in the right hippocampus ipsilateral to the ligation of the common carotid artery by western blotting at 12 hours following hypoxic-ischemic injury, and then slowly decreased. The immunofluorescent expressions of Fas and FasL strongly increased in the CA1 area of the right hippocampus at 12 and 24 hours following hypoxic-ischemic injury. The immunofluorescent expression of Fas decreased at 48 hours, but the expression of FasL persisted strongly at 48 hours following hypoxic-ischemic injury. Conclusion : The interaction of Fas with FasL on the cell surface may be involved in neuronal injury following hypoxic-ischemic injury in the developing brain.

The Effects of Achyranthis Radix on Short-term Memory and Apoptosis in the Hippocampus of the Gerbil with Transient Global Ischemia (우슬이 뇌허혈 유발 모래쥐의 해마에서 신경세포 사멸과 단기기억력에 미치는 영향)

  • Yoon, Hyun-Seok;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.15-30
    • /
    • 2011
  • Objectives : The present study investigated the effects of Achyranthis Radix on short-term memory, apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils. Methods : The gerbils were divided into 5 groups(n=10); Sham operation group, ischemia-induced group, ischemia-induced and 50 mg/kg Achyranthis Radix-treated group, ischemia-induced and 100 mg/kg Achyranthis Radix-treated group, ischemia-induced and 200 mg/kg Achyranthis Radix-treated group. For this study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay, immunohistochemistry for caspase-3 and BrdU(5-Bromo-2'-deoxyuridine), and western blotting for bax, bcl-2 were performed. Results : The results revealed that ischemic injury impaired short-term memory and increased apoototic neuronal cell death in the hippocampal CA1(cornu ammonis area 1) region. Ischemic injury enhanced cell proliferation in the hippocampal CA1 region, the compensatory and adaptive process for excessive apoptosis. Achyranthis Radix treatment improved short-term memory by suppressing ischemia-induced apoptotic neuronal cell death in the hippocampal CA1 region. Also, Achyranthis Radix suppressed the ischemia-induced increase in cell proliferation in the hippocampal CA1 region. Conclusions : We showed that Achyranthis Radix alleviates ischemia-induced apoptotic neuronal cell death, thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.

Identification of Differentially Expressed Genes in Murine Hippocampus by Modulation of Nitric Oxide in Kainic Acid-induced Neurotoxic Animal Model

  • Suh, Yo-Ahn;Kwon, O-Min;Yim, So-Young;Lee, Hee-Jae;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2007
  • Kainic acid (KA) causes neurodegeneration, but no consensus has been reached concerning its mechanism. Nitric oxide may be a regulator of the mechanism. We identified differentially expressed genes in the hippocampus of mice treated with kainic acid, together with or without L-NAME, a nonselective nitric oxide synthase inhibitor, using a new differential display PCR method based on annealing control primers. Eight genes were identified, including clathrin light polypeptide, TATA element modulatory factor 1, neurexin III, ND4, ATPase, $H^+$ transporting, V1 subunit E isoform 1, and N-myc downstream regulated gene 2. Although the functions of these genes and their products remain to be determined, their identification provides insight into the molecular mechanism(s) involved in KA-induced neuronal cell death in the hippocampal CA3 area.

Protective Effect of Marine Natural Products against UVB-induced Damages in Human Skin Fibroblast via Antioxidant Mechanism (자외선으로 유도된 섬유아세포 손상에 대한 해양소재 추출물의 항산화 보호효과)

  • Jang, Jung-Hee;Lee, Chan;Kim, Sang-Chan;Chung, Ji-Wook;Park, Chan-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.79-87
    • /
    • 2010
  • Ultraviolet is the one of the main environmental factors promoting aging process via increased intracellular generation of reactive oxygen species (ROS) and decreased expression of endogenous antioxidant enzymes and molecules. Therefore, in this study, we tried to search for natural skin-protective antioxidant materials from marine origins (Porphyra Thalli, Laminariae japonicae thallus, Ostreae Concha, Sargassum Thallus, Undaria thallus, Haliotidis Concha, Codium thalli, Syngnathoides biaculeatus, Hippocampus, Stichopus Stichopus, Thalli, Hizikia fusiforme thalli) which exhibit free radical scavenging activity and protect against UVB-induced cytotoxicity and oxidative cell death. Free radical scavenging activity was shown in order of Undaria thallus. Sargassum Thallus, Laminariae japonicae thallus, Hippocampus, Haliotidis Concha, Ostreae Concha, Syngnathoides biacuJeatus. In another experiment, UVB-induced cytotoxicity and cell death were effectively suppressed by treatment of Sargassum Thallus, Haliotidis Concha, Codium thalli, or Hippocampus water extract. Furthermore, UVB-induced cell death was mediated by intracellular accumulation or ROS, which was significantly inhibited by treatment with aforementioned extracts. The protective effect of these marine natural products seemed to be mediated by increased expression of antioxidant enzymes such as catalase, superoxide dismutase, and heme oxygenase-1. These results suggest that Sargassum Thallus, Haliotidis Concha, Codium thalli, and Hippocampus may have preventive and protective potentials as new functional cosmetics against oxidative stress-mediated skin damages and aging with antioxidant properties.

Effect of Memory-enhancing Herbal Extract (YMT_02) on Modulating Pentraxin, PEP-19 and Transthyretin gene Expression in Rat Hippocampus (육미지황탕가미방에 의한 흰쥐 기억력 향상과 관련된 Hippocampus 부위의 특이 유전자 발현에 대한 연구)

  • Sim Dea Sik;Rho Sam Woong;Lee Jin Woo;Lee Eun A;Cho Chong Woon;Bae Hyun Su;Shin Min Kyu;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.684-692
    • /
    • 2003
  • The herbal extract(YMT_02) is a modified extracts from Yukmijihwang-tang(YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as replenishing yin and tonifying the kidneys herbal medicine for hundred years ia Asian countries. The purpose of this study is to: 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by passive avoidance test, 2) statistical evaluation of candidate gene expression (pentraxin. PEP-19, transthyretin) in rat hippocampus. The hippocampi of YMT_02 and control group were dissected and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Real Time PCR. The results were as follows : 1) passive avoidance test showed enhancing memory retentin by YMT_02 treatment, 2) expression of pentraxin, that accelerate degenerating of neuronal cell, was significantly decreased, 3) the mRNA of genes that has been known to be associated with protecting neuronal cell degeneration, such as PEP-19 and transthyretin, were significantly increased upon YMT_02 treatment. From above results, the administration of YMT_02 which tonify the function of Kidneys could enhance the ability of memory and learning. In addition, the administration of YMT_02 enhance memory retention through modulating particular gene (pentraxin, PEP-19, transthyretin) expressions in hippocampu.

Effect of Chengsimyeunja-eum (淸心蓮子飮) and Sunghyangjungi-san (星香正氣散) on Streptozotocin-induced Ischemic Damaged Diabetic Rats (청심연자음(淸心蓮子飮)과 성향정기산(星香正氣散)이 Streptozotocin유발(誘發) 당뇨(糖尿)흰쥐의 뇌허혈 손상(腦虛血 損傷)에 미치는 영향(影響))

  • Park, Soon-Il;Lee, Won-Chul
    • The Journal of Korean Medicine
    • /
    • v.28 no.3 s.71
    • /
    • pp.216-231
    • /
    • 2007
  • Objectives : Chengsimyeunja-eum and Sunghyangjungi-san are prescriptions used for cerebral infarction clinically; it is known that these formulas reduce ischemic damage. According to previous research data, controlling certain types of glucose is considered to decrease the risk of cerebral infarction. Based on this fact, we investigated the effects of Chengsimyeunja-eum and Sunghyangjungi-san extracts on reperfusion following ischemic damage to diabetic rats, the change of c-FOS and Bax positive neurons in the hippocampus and cerebral cortex and protein through immunohistochemical methods, changes of serum glucose level, serum triglyceride level, and hepatic glucokinase activity. Methods : We induced ischemic damaged in diabetic rats, and the rats were administered Chengsimyeunja-eum and Sunghyangjungi-san extracts. Results : Chengsimyeunja-eum demonstrated significant decrease of c-Fos positive neurons in both hippocampus and cerebral cortex as well as a significant decrease of Bax positive neurons in hippocampus after ischemic damage on diabetic rats and decrease of serum glucose level after ischemic damage on diabetic rats. Sunghyangjungi-san demonstrated significant decreases of c-Fos and Bax positive neurons in both hippocampus and cerebral cortex after ischemic damage on diabetic rats. Conclusions : Chengsimyeunja-eum, effect on glucose level control, has a remarkable effect of protection of neurons not effective on glucose level. Sunghyangjungi-san showed neuroprotective effect through preventing neuronal cell death.

  • PDF

Antioxidant Activity of Pepsin Hydrolysate Derived from Edible Hippocampus abdominalis in vitro and in Zebrafish Models (빅벨리 해마(Hippocampus abdominalis) 유래 펩신 가수분해물의 In vitro와 In vivo에서의 항산화 효능)

  • Kim, Hyun-Soo;Shin, Byeung-Ok;Kim, Seo-Young;Wang, Lei;Lee, WonWoo;Kim, Yoon Taek;Rho, Sum;Cho, Moonjae;Jeon, You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.4
    • /
    • pp.445-453
    • /
    • 2016
  • Seahorse Hippocampus abdominalis a marine teleost fish, has long been used as one of the essential materials in traditional Chinese medicine. However, the uses of seahorse have been limited due to its high cost, despite its beneficial biological activities. Seahorse has not been widely explored for its biofunctional properties and active components. In the present study, the enzymatic hydrolysates of seahorse were prepared by using two digestive enzymes (trypsin and pepsin) and five food grade enzymes (neutrase, protamex, alcalase, kojizyme, and flavourzyme). The enzymatic hydrolysates indicated higher hydrolysis yields than its water extract. Among them, the distilled water-pepsin hydrolysate (DP) which was obtained by distilled water extraction followed by pepsin hydrolysis, showed the highest yield and protein content as well as the highest alkyl radical scavenging activity. Also, it provided protective effects against oxidative stress induced by AAPH in vero cell and zebrafish. Further fractionation based on the molecular weight was carried out to identify it’s active components, and < 5 kDa (less than 5 kDa) molecular weight fraction was confirmed to have the highest antioxidant activity. In conclusion, this study suggests that DP of seahorse has antioxidant properties, and might be a novel and useful material from the marine origin for healthy functional foods and cosmetics.

Effect of Panax ginseng on Latency of Passive Avoidance Response and Neuronal Damage of Hippocampus

  • Cho, So-Hyun;Choi, Sang-Hyun;Choi, Jae-Won;Kim, Dong-Hoon;Shin, Kyung-Ho;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.345-353
    • /
    • 1997
  • The effects of crude saponin (SAP) and alkaloid (ALK) fractions of Panax ginseng C.A. Meyer on the detrimental effects of electroconvulsive shock (ECS) and scopolamine on passive avoidance response (PAR) were studied in male Sprague-Dawley rats, referring their effects on the neuronal injury and plasticity of hippocampus in response to electrolytic lesion of left entorhinal cortex (ECL). The detrimental ECS effect on PAR was attenuated by pre- and post-treatments with SAP and ALK, respectively, or by pretreatment with aminoguanidine (AG), an inhibitor of diamine oxidase and NO synthase. And the detrimental scopolamine effect on PAR was also inhibited by pre-treatment with ALK or AG, and by post- treatment with SAP or ALK, respectively. On the 7th day after ECL, the brain sections stained by cresyl violet and by acetylcholinesterase (AChE) histochemistry, respectively, showed the chromatolysis and numeral decrease of neurons and the reduction of AChE reactivity in the hippocampus CA1 area and to a lesser extent, in the dentate gyrus. The neuronal cell death of the CA1 area was significantly reduced by SAP, ALK, or AG, and the reduction of AChE reactivity was significantly attenuated by SAP or ALK and to a lesser extent by AG. These results suggests that the protective effect of ginseng SAP and ALK fractions on ECS- or scopolamine-induced impairment of PAR may be ascribed in part to preservation of hippocampal neurons, particularly cholinergic neurons.

  • PDF

Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus

  • Kim, Ju Hwan;Sohn, Uy Dong;Kim, Hyung-Gun;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.277-289
    • /
    • 2018
  • The exponential increase in the use of mobile communication has triggered public concerns about the potential adverse effects of radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones on the central nervous system (CNS). In this study, we explored the relationship between calcium channels and apoptosis or autophagy in the hippocampus of C57BL/6 mice after RF-EMF exposure with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Firstly, the expression level of voltage-gated calcium channels (VGCCs), a key regulator of the entry of calcium ions into the cell, was confirmed by immunoblots. We investigated and confirmed that pan-calcium channel expression in hippocampal neurons were significantly decreased after exposure to RF-EMF. With the observed accumulation of autolysosomes in hippocampal neurons via TEM, the expressions of autophagy-related genes and proteins (e.g., LC3B-II) had significantly increased. However, down-regulation of the apoptotic pathway may contribute to the decrease in calcium channel expression, and thus lower levels of calcium in hippocampal neurons. These results suggested that exposure of RF-EMF could alter intracellular calcium homeostasis by decreasing calcium channel expression in the hippocampus; presumably by activating the autophagy pathway, while inhibiting apoptotic regulation as an adaptation process for 835 MHz RF-EMF exposure.

Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus

  • Kwak, Ji-Hye;Lee, Kyungmin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.317-322
    • /
    • 2021
  • CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.