• Title/Summary/Keyword: hippocampal cells

Search Result 229, Processing Time 0.075 seconds

Expression of Nerve Growth Factor in Estradiol Valerate-induced Polycystic Ovary Syndrome (Estradiol valerate에 의해 유발되는 다낭성난소증후군의 Nerve Growth Factor 변화)

  • Kim, Se-Eun;Lim, Sung-Chul;Jeong, Moon-Jin;Choi, Baik-Dong;Kim, Seung-Hyun;Ko, A-Ra;Seo, Seung-Yong;Kang, Seong-Soo;Moon, Chang-Jong;Kim, Jong-Choon;Kim, Sung-Ho;Bae, Chun-Sik
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.403-407
    • /
    • 2011
  • A form of polycystic ovary (PCO) resembling some aspects of the human PCO syndrome (PCOS) can be induced in rats by a single injection of estradiol valerate (EV). An increase in sympathetic outflow to the ovary precedes, by several weeks, the appearance of cysts, suggesting the involvement of a neurogenic component in the pathology of this ovarian dysfunction. To test the hypotheses that the change in sympathetic tone is related to an augmented production of hippocampal and/or ovarian nerve growth factor (NGF), and that this abnormally elevated production of NGF contributes to the induction of PCOS induced by EV. The animals were sacrificed after PCOS induction and the ovaries and hippocampus were sectioned and compared to the normal control. The expression of NGF was measured by immunohistochemical staining and Western blot analysis in the ovaries and hippocampus. EV-induced PCOS showed significant increase of ovarian NGF expression. Immunohistochemical expression of NGF was confined to the follicular cells and interstitial cells. Hippocampal NGF expression was not significantly changed. In conclusion EV-induced PCOS was related to the ovarian sympathetic activation which was mediated by NGF.

Effects of Woo-Gui-Um on A${\beta}$ Toxicity and Memory Dysfunction in Mice

  • Hwang, Gwang-Ho;Kim, Bum-Hoi;Shin, Jung-Won;Shim, Eun-Sheb;Lee, Dong-Eun;Lee, Sang-Yul;Lee, Hyun-Sam;Jung, Hyuk-Sang;Sohn, Nak-Won;Sohn, Young-Joo
    • The Journal of Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.1-14
    • /
    • 2009
  • Objectives : Alzheimer's disease (AD) is characterized by neuronal loss and extracellular senile plaque. Moreover, the cellular actions of ${\beta}$-amyloid (A${\beta}$ play a causative role in the pathogenesis of AD. This study was designed to determine whether Woo-Gui-Um, a commonly used Korean herbal medicine, has the ability to protect cortical and hippocampal neurons against A${\beta}_{25-35}$ neurotoxicity Methods : In the present study, the authors investigated the preventative effects of the water extract of Woo-Gui-Um in a mouse model of AD. Memory impairment was induced by intraventricularly (i.c.v.) injecting A${\beta}_{25-35}$ peptides into mice. Woo-Gui-Um extract was then administered orally (p.o.) for 14 days. In addition, A${\beta}_{25-35}$ toxicity on the hippocampus was assessed immunohistochemically, by staining for Tau, MAP2, TUNEL, and Bax, and by performing an in vitro study in PC12 cells. Results : Woo-Gui-Um extract had an effect to improve learning ability and memory score in the water maze task. Woo-Gui-Um extract had significant neuroprotective effects in vivo against oxidative damage and apoptotic cell death of hippocampal neurons caused by i.c.v. A${\beta}_{25-35}$. In addition, Woo-Gui-Um extract was found to have a protective effect on A${\beta}_{25-35}$-induced apoptosis, and to promote neurite outgrowth of nerve growth factor (NGF)-differentiated PC12 cells. Conclusions : These results suggest that Woo-Gui-Um extract reduces memory impairment and Alzheimer's dementia via an anti-apoptotic effect and by regulating Tau and MAP2 in the hippocampus.

  • PDF

Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury

  • Park, Jung Hwan;Kim, Dae Won;Shin, Min Jea;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Choi, Yeon Joo;Yeo, Hyeon Ji;Yeo, Eun Ji;Sohn, Eun Jeong;Kim, Hyoung-Chun;Shin, Eun-Joo;Cho, Sung-Woo;Kim, Duk-Soo;Cho, Yong-Jun;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.582-587
    • /
    • 2020
  • It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.

Neuroprotective Effects of Haein-tang(Hairen-tang) on Decrease of Short-term Memory and Apoptosis in Dentate Gyrus of the Gerbils with Transient Global Ischemia (해인탕이 뇌허혈 유발 모래쥐의 단기기억력 감퇴와 치상회 세포사멸에 미치는 효과)

  • Park, Jung-Chul;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2011
  • Objectives : We investigated the effect of Haein-tang(Hairen-tang) on short-term memory and apoptosis in dentate gyrus of the gerbils with transient global ischemia. Methods : For the induction of cerebral ischemia model in mice, common carotid arteries of gerbils were occluded with aneurysm clips for 5 min. One day after operation, Haein-tang(Hairen-tang) was administrated orally injected once a day for 15 consecutive days. Gerbils were randomly divided into four group(n=10 in each group): sham-operation group, ischemia-induction group, ischemia-induction and 50 mg/kg Haein-tang(Hairen-tang)-treated group, ischemia-induction and 100 mg/kg Haein-tang(Hairen-tang)-treated group, and ischemia-induction and 200 mg/kg Haein-tang(Hairen-tang)-treated group. The effect of Haein-tang(Hairen-tang) on memory function was investigated by using step-down avoidance task. Apoptosis was confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) staining and immunohistochemistry for caspase-3. Western blot analysis for the expressions of Bax and Bcl-2 protein was also conducted. Results : 1. Haein-tang extract significantly enhanced short-term memory in step-down avoidance task and 100 mg/kg, 200 mg/kg Haein-tang-treated group. 2. Haein-tang extract significantly suppressed TUNEL-positive cells after transient global ischemia and 50 mg/kg, 100 mg/kg, 200 mg/kg Haein-tang-treated group. 3. Haein-tang extract significantly increased caspase-3 positive cells in the hippocampal dentate gyrus after transient global ischemia and 50 mg/kg, 100 mg/kg, 200 mg/kg Haein-tang-treated group. 4. Haein-tang extract significantly decreased Bax protein expressions in the hippocampus after transient global ischemia and 100 mg/kg, 200 mg/kg, Haein-tang-treated group. Haein-tang extract significantly increased Bcl-2 protein expressions in the hippocampal dentate gyrus after transient global ischemia and 50 mg/kg, 100 mg/kg, 200 mg/kg, Haein-tang-treated group. Haein-tang extract significantly decreased Ratio of Bax protein to Bcl-2 protein in the hippocampus after transient global ischemia and 100 mg/kg, 200 mg/kg Haein-tang-treated group. Conclusions : While Haein-tang(Hairen-tang) treatment improved short-term memory by suppressing on ischemia-induction apoptosis. In the present study, Haein-tang(Hairen-tang) shows protective effect on transient global ischemia.

Effect of Curcumin Derivatives on Heme Oxygenase-1 Expression in HT22 Cells (HT22 세포에서 Curcumin 유도체가 Heme Oxygenase-1 발현에 미치는 효과)

  • Cheong, Yong-Kwan;Lee, Yun-Jung;Chun, Hyun-Ja;Ryu, Il-Hwan;Jee, Yeon-Ju;Chae, Gwon-U;Kim, Young-Sook;Shon, Ji-Ue;Kang, Hyun-Gyu;Lee, Sung-Hee;An, Ren-Bo;Chung, Hun-Taeg;Pae, Hyun-Ock
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • Curcumin, of which a critical characteristic is the capacity of crossing the blood-brain barrier, has been reported to induce the expression of neuroprotective heme oxygenase (HO)-1. The aim of this study is to compare HO-1-inducing capacity and neuroprotective activity of curcumin, its demethoxy (demethoxycurcumin, DMC; bis-demethoxycurcumin, BDMC) and hydrogenated derivatives (tetrahydrocurcumin, THC) in mouse hippocampal HT22 cells. Curcumin attenuated glutamate-induced cell death through HO-1 expression. DMC lacking a methoxy group on one of the aromatic rings possessed slightly lower activity in HO-1 expression and neuroprotection than curcumin. Similarly, BDMC, which lacks two methoxy groups on both of the aromatic rings, showed less activity than curcumin. These findings suggest that the presence of methoxy groups on the aromatic ring is required to enhance neuroprotective HO-1 expression. The reduction of the diarylheptadienone chain of curcumin by hydrogen, as in THC, was accompanied by a complete loss of ability to induce HO-1 expression and neuroprotection, suggesting that the conjugated double bonds of the central seven-carbon chain of curcumin may be essential for its ability to induce neuroprotective HO-1 expression. Our findings may provide useful information for further development of neuroprotective HO-1 inducers.

Tat-Thioredoxin-like protein 1 attenuates ischemic brain injury by regulation of MAPKs and apoptosis signaling

  • Hyun Ju Cha;Won Sik Eum;Gi Soo Youn;Jung Hwan Park;Hyeon Ji Yeo;Eun Ji Yeo;Hyun Jung Kwon;Lee Re Lee;Na Yeon Kim;Su Yeon Kwon;Yong-Jun Cho;Sung-Woo Cho;Oh-Shin Kwon;Eun Jeong Sohn;Dae Won Kim;Duk-Soo Kim;Yu Ran Lee;Min Jea Shin;Soo Young Choi
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.234-239
    • /
    • 2023
  • Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury.

Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice

  • Lee, Kang Pa;Choi, Nan Hee;Kim, Hyun-Soo;Ahn, Sanghyun;Park, In-Sik;Lee, Dea Won
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: One of the mechanisms considered to be prevalent in the development of Alzheimer's disease (AD) is hyper-stimulation of microglia. Black chokeberry (Aronia melanocapa L.) is widely used to treat diabetes and atherosclerosis, and is known to exert anti-oxidant and anti-inflammatory effects; however, its neuroprotective effects have not been elucidated thus far. MATERIALS/METHODS: We undertook to assess the anti-inflammatory effect of the ethanolic extract of black chokeberry friut (BCE) in BV2 cells, and evaluate its neuroprotective effect in the lipopolysaccharide (LPS)-induced mouse model of AD. RESULTS: Following stimulation of BV2 cells by LPS, exposure to BCE significantly reduced the generation of nitric oxide as well as mRNA levels of numerous inflammatory factors such as inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin 1 beta ($IL-1{\beta}$), and tumor necrosis factor alpha ($TNF-{\alpha}$). In addition, AD was induced in a mouse model by intraperitoneal injection of LPS ($250{\mu}g/kg$), subsequent to which we investigated the neuroprotective effects of BCE (50 mg/kg) on brain damage. We observed that BCE significantly reduced tissue damage in the hippocampus by downregulating iNOS, COX-2, and $TNF-{\alpha}$ levels. We further identified the quinic acids in BCE using liquid chromatography-mass spectrometry (LCMS). Furthermore, we confirmed the neuroprotective effect of BCE and quinic acid on amyloid beta-induced cell death in rat hippocampal primary neurons. CONCLUSIONS: Our findings suggest that black chokeberry has protective effects against the development of AD.

N-Acetyl-D-Glucosamine Kinase Is a Component of Nuclear Speckles and Paraspeckles

  • Sharif, Syeda Ridita;Lee, HyunSook;Islam, Md. Ariful;Seog, Dae-Hyun;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.402-408
    • /
    • 2015
  • Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.

Effects of Puerariae flos herb-acupuncture on cell proliferation and neurogenesis in the dentate gyrus of ethanol-induced Sprague-Dawley rats (갈화 약침이 알콜 중독 흰쥐의 치상회에서 신경세포 생성에 미치는 영향)

  • Kim Youn-Hee;Kim Ee-Hwa;Jang Mi-Hyun;Lim Back-Vin;Kim Youn-Jung;Chung Joo-Ho;Seo Jung-Chul;Kim Chang-Ju
    • Journal of Acupuncture Research
    • /
    • v.18 no.6
    • /
    • pp.206-214
    • /
    • 2001
  • The purpose of this study was to determine the effects of Puerariae flos herb-acupuncture on hippocampal neural cell proliferation. Sprague-Dawley rats were randomly assigned into 4 groups; control group, control with herb-acupuncture group, alcohol group, alcohol with herb-acupuncture group group. Control groups were received with NaCl, while alcohol intoxication groups were injected intraperitoneally with alcohol (2 g/㎏) twice per day for 3 days. Herb-acupuncture groups were injected on Zhongwan (CV 12) for 5 consecutive days. Bromo-deoxyuridine (BrdU) was injected into all animal per day for 5 days. For the detection of BrdU-positive cells in dentate gyrus of hippocampus, immunohistochemistry was performed. In alcohol group, a significant decrease in BrdU-positive cells was observed compared to control group. In alcohol with herb-acupuncture group, BruU-positive cells increased significantly compared to alcohol group. In conclusion, the present results revealed that new cell proliferation is enhanced in the dentate gyros of young Sprague-Dawley rats through Puerariae flos herb-acpuncuture in an acute alcoholic intoxication condition.

  • PDF

Neuroprotective and Free Radical Scavenging Activities of Phenolic Compounds from Hovenia dulcis

  • Li, Gao;Min, Byung-Sun;Zheng, Chang-Ji;Lee, Joong-Ku;Oh, Sei-Ryang;Ahn, Kyung-Seop;Lee, Hyeong-Kyu
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.804-809
    • /
    • 2005
  • The EtOAc-soluble fraction from a methanolic extract of Hovenia dulcis Thunb. exhibited neuroprotective activity against glutamate-induced neurotoxicity in mouse hippocampal HT22 cells. The neuroprotective activity-guided isolation resulted in 8 phenolic compounds (1-8), such as vanillic acid (1), ferulic acid (2), 3,5-dihydroxystilbene (3), (+)-aromadendrin (4), methyl vanillate (5), (-)-catechin (6), 2,3,4-trihydrobenzoic acid (7), and (+)-afzelechin (8). Among these, compounds 6 and 8 had a neuroprotective effect on the glutamate-induced neurotoxicity in HT22 cells. Furthermore, compound 6 had a DPPH free radical scavenging effect with an $IC_{50}$ value of $57.7{\mu}M$, and a superoxide anion radical scavenging effect with an $IC_{50}$ value of $8.0{\mu}M$. Both compounds 6 and 8 had ABTS cation radical scavenging effects with $IC_{50}$ values of $7.8{\mu}M\;and\;23.7${\mu}M$, respectively. These results suggest that compounds 6 and 8 could be neuroprotectants owing to their free radical scavenging activities.