• 제목/요약/키워드: hilD

검색결과 26건 처리시간 0.029초

Salmonella Invasion Gene Regulation: A Story of Environmental Awareness

  • Jones Bradley D.
    • Journal of Microbiology
    • /
    • 제43권spc1호
    • /
    • pp.110-117
    • /
    • 2005
  • Salmonella enterica serovar Typhimurium causes human gastroenteritis and a systemic typhoid-like infection in mice. A critical virulence determinant of Salmonella is the ability to invade mammalian cells. The expression of genes required for invasion is tightly regulated by environmental conditions and a variety of regulatory genes. The hilA regulator encodes an OmpR/ToxR family transcriptional regulator that activates the expression of invasion genes in response to both environmental and genetic regulatory factors. Work from several laboratories has highlighted that regulation of hilA expression is a key point for controlling expression of the invasive phenotype. A number of positive regulators of hilA expression have been identified including csrAB, sirA/barA, pstS, hilC/sirC/sprA, fis, and hilD. HilD, an AraC/XylS type transcriptional regulator, is of particular importance as a mutation in hilD results in a 14-fold decrease in chromosomal hilA::Tn5lacZY-080 expression and a 53-fold decrease in invasion of HEp-2 cells. It is believed that HilD directly regulates hilA expression as it has been shown to bind to hilA promoter sequences. In addition, our research group, and others, have identified genes (hilE, hha, pag, and lon) that negatively affect hilA transcription. HilE appears to be an important Salmonella-specific regulator that plays a critical role in inactivating hilA expression. Recent work in our lab has been directed at understanding how environmental signals that affect hilA expression may be processed through a hilE pathway to modulate expression of hilA and the invasive phenotype. The current understanding of this complex regulatory system is reviewed.

Salmonella Pathogenicity Island 1(SPI1)의 발현조절 유전자 invF의 변이가 SPI2 유전자(sseA)의 발현에 미치는 영향 (Mutation of the invF Gene Encoding a Salmonella Pathogenicity Island 1 (SPI1) Activator Increases Expression of the SPI2 Gene, sseA)

  • 한아름;조민호;김동호;백상호;임상용
    • 한국미생물·생명공학회지
    • /
    • 제40권1호
    • /
    • pp.70-75
    • /
    • 2012
  • 살모넬라(Salmonella)의 염색체에 존재하는 병원성 유전자의 집합체인 Salmonella pathogenicity island(SPI)1 과 2는 살모넬라가 유발하는 다양한 질병에 중요한 역할을 한다. SPI1의 발현을 유도하는 HilD는 Luria-Bertani(LB) 배지 조건에서 SPI2의 발현 활성인자로 작용하는 것으로 알려져 있으나 LB 배지 내에서 hilD 유전자의 발현 양상은 아직까지 연구되지 않았다. 본 연구에서는 LB 배지에 살모넬라를 배양하면서 hilD 유전자의 발현과 단백질 양을 조사하였으며 SPI2 유전자인 sseA의 발현과 비교하였다. hilD의 발현은 대수 증식기 경과 후 정지기(stationary phase)로 전환되는 시기에 비약적으로 증가하였으나 sseA의 발현은 정지기 후반부에 최대로 증가하였다. 즉, 후반 정지기에서 HilD 단백질은 낮은 수준으로 존재함에도 불구하고 SPI2의 발현을 유도한다는 것을 알 수 있었다. SPI1의 다른 발현 조절인자인 hilA와 invF의 변이체에서 sseA의 발현을 살펴본 결과 invF의 변이는 hilD와는 다르게 배지 조건에 상관없이 오히려 sseA의 발현을 증가시켰다. 또한, InvF의 과발현은 sseA 발현을 정상 수준으로 복원시켰지만 추가적인 감소는 일으키지 않는다는 것을 알 수 있었다. SPI1은 HilD를 이용하여 SPI2의 발현을 유도하지만 반대로 InvF를 이용하여 발현을 억제하기도 하는 이중적인 조절 기전을 가지고 있는 것으로 판단된다.

Hardware In-the-Loop Simulation의 다중 코어 연산시 발생할 수 있는 연산 오류 및 연산속도 저하를 해결하기 위한 회로 구성 기법 제안 (Circuit Design Method to Solve the Processing Error and the Processing Speed Decreasing Problems in Multi-core Hardware In-the-Loop Simulation)

  • 채범석;전재현;김경수;오현석;박철현;이정준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.421-422
    • /
    • 2020
  • Hardware In-the-Loop simulation(HIL)은 실제 하드웨어 시스템을 실시간 모사할 수 있는 시뮬레이션 장비로 연구 및 개발 기간의 단축, 비용저감 등의 장점을 앞세워 다양한 전력전자 분야에 사용되고 있다. 실제 하드웨어를 그대로 모사하는 것이 HIL의 목적이기 때문에 HIL 장비는 검증의 실시간성과 출력된 결과의 정확성이 무엇보다도 중요하다고 할 수 있다. 하지만 코어간의 데이터를 주고받는 과정에서 HIL의 연산 속도 및 정확성을 저해하는 요인들이 발생하게 된다. 본 연구에서는 HIL 장비를 이용해 복잡한 시스템을 구현함에 있어서 연산속도 및 정확성을 저해하는 요인들을 찾아내고 이를 해결하기 위한 방법을 제안한다. 제안된 연산속도 개선 및 정확성 개선 방법의 타당성은 프로세서의 연산 속도 변화량, HIL 및 시험 결과 파형의 비교 분석을 통해 검증되었다.

  • PDF

Hfq and ArcA Are Involved in the Stationary Phase-Dependent Activation of Salmonella Pathogenicity Island 1 (SPI1) Under Shaking Culture Conditions

  • Lim, Sangyong;Yoon, Hyunjin;Kim, Minjeong;Han, Ahreum;Choi, Jihae;Choi, Jeongjoon;Ryu, Sangryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1664-1672
    • /
    • 2013
  • In Salmonella enterica serovar Typhimurium, many genes encoded within Salmonella pathogenicity island 1 (SPI1) are required to induce intestinal/diarrheal disease. In this study, we compared the expression of four SPI1 genes (hilA, invF, prgH, and sipC) under shaking and standing culture conditions and found that the expression of these genes was highest during the transition from the exponential to stationary phase under shaking conditions. To identify regulators associated with the stationary phase-dependent activation of SPI1, the effects of selected regulatory genes, including relA/spoT (ppGpp), luxS, ihfB, hfq, and arcA, on the expression of hilA and invF were compared under shaking conditions. Mutations in the hfq and arcA genes caused a reduction in hilA and invF expression (more than 2-fold) in the early stationary phase only, whereas the lack of ppGpp and IHF decreased hilA and invF gene expression during the entire stationary phase. We also found that hfq and arcA mutations caused a reduction of hilD expression upon entry into the stationary phase under shaking culture conditions. Taken together, these results suggest that Hfq and ArcA regulate the hilD promoter, causing an accumulation of HilD, which can trigger a stationary phase-dependent activation of SPI1 genes under shaking culture conditions.

Analysis of Salmonella Pathogenicity Island 1 Expression in Response to the Changes of Osmolarity

  • LIM, SANG-YONG;YONG, KYEONG-HWA;RYU, SANG-RYEOL
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.175-182
    • /
    • 2005
  • Abstract Salmonella pathogenicity island 1 (SPI1) gene expression is regulated by many environmental signals such as oxygen, osmolarity, and pH. Here, we examined changes in the expression level of various regulatory proteins encoded within SPI1 in response to three different concentrations of NaCl, using primer extension analysis. Transcription of all the regulatory genes tested was activated most when Salmonella were grown in Luria Broth (LB) containing 0.17 M NaCl. The expression of hilA, invF, and hilD was decreased in the presence of 0.47 M NaCl or in the absence of NaCl, while hilC expression was almost constant regardless of the NaCl concentration when Salmonella were grown to exponential phase under low-oxygen condition. The reduced expression of hilA, invF, and hilD resulted in lower invasion of hilC mutant to the cultured animal cells when the mutant was grown in the presence of 0.47 M NaCl or in the absence of NaCl prior to infection. Among the proteins secreted via the SPI1-type III secretion system (TTSS), the level of sopE2 expression was not influenced by medium osmolarity. Various effects of osmolarity on virulence gene regulation observed in this study is one example of multiple regulatory pathways used by Salmonella to cause infection.

Hole Injection Layer by Ion Beam Assisted Deposition for Organic Electroluminescence Devices

  • Choi, Sang-Hun;Jeong, Soon-Moon;Koo, Won-Hoe;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1619-1622
    • /
    • 2005
  • The ultra thin hole injection layer (HIL) was deposited on an indium-tin-oxide (ITO) anode by using an ion beam assisted d eposition (IBAD) for the fabrication of an polymeric electroluminescence device for the first time. The device with the HIL deposited by IBAD has higher external quantum efficiency than the device with the HIL by conventional thermal evaporation. It is found that the deposited HIL by IBAD has high surface coverage on ITO anode in a few nm regions because the HIL prepared has high adatom mobility by ion beam energy.

  • PDF

Self-organized gradient hole injection to improve the performance of organic light-emitting diodes

  • Lee, Tae-Woo;Chung, Young-Su;Kwon, O-Hyun;Park, Jong-Jin;Chang, Seoung-Wook;Kim, Mu-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1813-1818
    • /
    • 2006
  • We demonstrate a new approach to form gradient hole injection layer (HIL) in organic light-emitting diodes (OLEDs). Single spincoating of hole-injecting conducting polymer compositions with a perfluorinated ionomer results in gradient workfunction through the layer by self-organization, which lead to remarkably efficient single layer polymer light-emitting diodes (PLEDs) (${\sim}21$ cd/A). The device lifetime was significantly improved (${\sim50$ times) compared with the conventional hole injection layer, poly(3,4-ethylenedioxy-thiophene)/polystyrene sulfonate. This solution processed HIL also produced dramatically enhanced luminous efficiency (${\sim}34$ cd/A) in vacuum- deposited green fluorescent OLEDs while the vacuum deposited HIL gave the luminous efficiency of ${\sim}23$ cd/A in the same device structure.

  • PDF

HIL을 이용한 터보과급기 승용 디젤 엔진의 과도 성능 예측 (Prediction of the Transient Performance of the Passenger Diesel Engine with Turbocharger using HIL)

  • 정진은;진영욱;정동영;정재우
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.127-132
    • /
    • 2009
  • The transient performance of the passenger diesel engine equipped with the variable geometry turbocharger was simulated using HIL(hardware-in-the-loop) system. The system consists of engine model as software, and the turbocharger test bench as hardware. The engine model is mean value model which is programmed by the Simulink of the Mathworks. The turbocharger test bench is composed of a blower, some sensors, and DAQ boards. A real time simulation is possible since the operating system based on the real time is included. The results show the good response for the transient characteristics. Therefore this HIL system can be used for development of the new turbocharger effectively.

Genetic and Environmental Control of Salmonella Invasion

  • Altier, Craig
    • Journal of Microbiology
    • /
    • 제43권spc1호
    • /
    • pp.85-92
    • /
    • 2005
  • An early step in the pathogenesis of non-typhoidal Salmonella species is the ability to penetrate the intestinal epithelial monolayer. This process of cell invasion requires the production and transport of secreted effector proteins by a type III secretion apparatus encoded in Salmonella pathogenicity island I (SPI-1). The control of invasion involves a number of genetic regulators and environmental stimuli in complex relationships. SPI-1 itself encodes several transcriptional regulators (HilA, HilD, HilC, and InvF) with overlapping sets of target genes. These regulators are, in turn, controlled by both positive and regulators outside SPI-1, including the two-component regulators BarA/SirA and PhoP/Q, and the csr post-transcriptional control system. Additionally, several environmental conditions are known to regulate invasion, including pH, osmolarity, oxygen tension, bile, $Mg^{2+}$ concentration, and short chain fatty acids. This review will discuss the current understanding of invasion control, with emphasis on the interaction of environmental factors with genetic regulators that leads to productive infection.

Hybrid Imprint Lithography 공정을 이용한 3D 구조물 제작 (Fabrication of 3-D structures using hybrid imprint lithography)

  • 신상현;김한형;양승국;이종근;오범환;이승걸;이일항;박세근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.509-510
    • /
    • 2008
  • Hybrid Imprint Lithography (HIL) is proposed where photolithography and imprinting processes are employed. Fabrication step of multilevel or three dimensional patterns is suggested. The method of controlling residual layer thickness after imprinting is developed. The thickness of residual layer changes lineally with imprinting time and can be controlled. Polymer patterns fabricated by this HIL is demonstrated.

  • PDF