• 제목/요약/키워드: highway bridge

검색결과 544건 처리시간 0.024초

수도권 국도교량 세굴위험도 평가 및 등급화 사례 연구 (A Case Study of Bridge Scour Vulnerability Evaluation and Prioritization for National Highway Bridges in the National Capital Region)

  • 박재현;김정훈;안성철;이주형;정문경;곽기석
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.7-21
    • /
    • 2008
  • 홍수 시 세굴로 인한 교량 기초의 파괴는 국내외적으로 교량 붕괴의 첫 번째 원인이다. 본 연구에서는 수도권 지역의 실제 국도교량에 대하여 세굴 위험도 평가 및 등급화를 수행하였다. 30개소 교량을 선정하여 지반 시추조사를 포함한 현장조사, 설계 홍수량에 대한 교량세굴 해석, 그에 따른 교량기초의 지지력 평가 및 위험도 분석을 하였고, 이를 바탕으로 교량세굴 위험도를 등급화 하였다. 위험도 평가 결과 직접확대기초 교량 26개소 중 9개소 교량이 장래 세굴 위험 가능성이 있는 것으로 나타났고, 나머지 17개소 교량은 안정한 수준으로 나타났다 말뚝기초 교량 4개소 중 3개소의 교량이 유의할 만한 수준으로 지지력이 감소하는 것으로 평가되었다.

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.

Fuzzy 개념을 이용한 RC도로교의 건전성평가 모델 개발 (Development of Integrity Assessment Model for Reinforced Concrete Highway Bridges Using Fuzzy Concept)

  • 나기현;박주원;이증빈;정철원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.151-161
    • /
    • 1998
  • In this study, an attempt is made to apply the concept of fuzzy-bayesian theory to the integrity assessment of RC highway bridge, and uncertainty states are represented in terms of fuzzy sets which define several linguistic variables such as "very good", "good", "average", "poor", "very poor", etc. Especially, the concept of fuzzy conditional probability aids to derive a new reliability analysis which includes the subjective assessment of engineers without introducing any additional correction factors. The fuzzy concept are also used as reliability indexes for the condition assessment based on the proposed models, the proposed fuzzy theory-based approach with the results of visual inspection and extensive field load tests are applied to the integrity assessment of a new RC highway bridge, namely, Jichok bridge.

  • PDF

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

도로교 내진설계 스펙트럼에 부합하는 표준 PSD함수의 제안 (A Proposal of Reference Power Spectral Density Functions Compatible with Highway Bridge Design Specta)

  • 최동호;이상훈;고정훈
    • 대한토목학회논문집
    • /
    • 제28권1A호
    • /
    • pp.59-67
    • /
    • 2008
  • 원전 구조물의 내진해석에서 사용하는 시간이력 함수는 적절한 하중을 보장하기 위하여 설계응답스펙트럼에 부합할 뿐만 아니라 최소 PSD함수 이상의 PSD함수를 갖도록 함으로서 각각의 진동수에서 일정 크기 이상의 에너지를 갖고 있어야 한다. 도로교 구조물에서도 구조물의 대형화와 정교화로 인한 구조물의 공공 기능의 안전성이 더욱 강조되어, 설계 목적의 PSD함수의 규정이 필요하지만 적절한 절차가 개발이 되지 않아 현실적으로 적용하기 어려운 실정이다. 본 연구에서는 다수의 인공지진을 이용하여 표준 PSD함수를 계산하는 절차를 제시하고 현재의 도로교 내진설계 스펙트럼에 부합하는 표준 PSD 함수를 제안하였다.

Seismic performance of skewed highway bridges using analytical fragility function methodology

  • Bayat, M.;Daneshjoo, F.
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.723-740
    • /
    • 2015
  • In this study, the seismic performance of skewed highway bridges has been assessed by using fragility function methodology. Incremental Dynamic Analysis (IDA) has been used to prepare complete information about the different damage states of a 30 degree skewed highway bridge. A three dimensional model of a skewed highway bridge is presented and incremental dynamic analysis has been applied. The details of the full nonlinear procedures have also been presented. Different spectral intensity measures are studied and the effects of the period on the fragility curves are shown in different figures. The efficiency, practicality and proficiency of these different spectral intensity measures are compared. A suite of 20 earthquake ground motions are considered for nonlinear time history analysis. It has been shown that, considering different intensity measures (IM) leads us to overestimate or low estimate the damage probability which has been discussed completely.

Train-induced dynamic behavior analysis of longitudinal girder in cable-stayed bridge

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan;Liu, Hua;Liu, Tiejun
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.549-559
    • /
    • 2018
  • The dynamic behaviors of the bridge structures have great effects on the comfortability and safety of running high-speed trains, which can also reflect the structural degradation. This paper aims to reveal the characteristics of the dynamic behaviors induced by train loadings for a combined highway and railway bridge. Monitoring-based analysis of the acceleration and dynamic displacement of the bridge girder is carried out. The effects of train loadings on the vertical acceleration of the bridge girder are analyzed; the spatial variability of the train-induced lateral girder displacement is studied; and statistical analysis has been performed for the daily extreme values of the train-induced girder deflections. It is revealed that there are great time and spatial variabilities for the acceleration induced by train loadings for the combined highway and railway cable-stayed bridge. The daily extreme values of the train-induced girder deflections can be well fitted by the general extreme value distribution.

프리스트레스트 콘크리트 거더 철도교의 최적설계 II: 동적안정성을 고려한 30m 지간의 최적단면 (Optimum Design of Prestressed Concrete Girder Railway Bridge II : Optimum Section with 30m Span Length Accounting for Dynamic Stability)

  • 이종민;김수현;정재동;이종선;조선규
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.102-109
    • /
    • 2006
  • The PSC girders which currently used at highway bridge have the standard cross sections about 25m, 30m and 35m span. Thus, in case of highway bridge design, the bridge designer can choose the adequate standard cross section according to constructional condition. However, in railway bridge design, there are limitations on reasonable bridge design considering circumstances of a construction site and conditions of location etc, because the PSC girders used at railway bridge have the cross section about only 25m span length. In this study, the optimum design for the PSC girder railway bridge with 30m span length has been performed. Also, in order to investigate the dynamic stability of railway bridge using the optimum section of PSC girder, dynamic analysis has been carried out. From the results of analysis, it is suggested to denote the optimum section which satisfied the structural safety, dynamic stability and economical efficiency all together.

Comparison of Totally Prefabricated Bridge Substructure Designed According to Korea Highway Bridge Design (KHBD) and AASHTO-LRFD

  • Kim, Tae-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.319-332
    • /
    • 2013
  • The purpose of this study was to investigate the design comparison of totally prefabricated bridge substructure system. Prefabricated bridge substructure systems are a relatively new and versatile alternative in substructure design that can offer numerous benefits. The system can reduce the work load at a construction site and can result in shorter construction periods. The prefabricated bridge substructures are designed by the methods of Korea Highway Bridge Code (KHBD) and load and resistance factor design (AASHTO-LRFD). For the design, the KHBD with DB-24 and DL-24 live loads is used. This study evaluates the design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. The computer program, reinforced concrete analysis in higher evaluation system technology was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints. This study documents the design comparison of totally prefabricated bridge substructure and presents conclusions and design recommendations based on the analytical findings.