• 제목/요약/키워드: highly non-linear

검색결과 241건 처리시간 0.028초

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Physicochemical and Sensory Properties of Baikseolgi Incorporated with Strawberry Powders

  • Lee, Jun Ho;Kim, Ji-Hye
    • 산업식품공학
    • /
    • 제14권3호
    • /
    • pp.271-276
    • /
    • 2010
  • Strawberry powder was incorporated into Baikseolgi by substituting the non-glutinous rice flour in the range of 0-8% based on the total weight of the non-glutinous rice flour and the effects on physicochemical and sensory properties were investigated. pH decreased significantly with the higher amount of strawberry powder in the formulation whereas titratable acidity showed a reverse trend (p<0.05). Moisture content also decreased significantly with the increasing amount of strawberry. Lightness ($L^{*}$-value) decreased significantly with higher strawberry powder concentration, indicating that the color of Baikseolgi became dark as also indicated by the visual observation. Redness ($a^{*}$-value) and yellowness ($b^{*}$-value), on the other hand, increased significantly with the substitution of strawberry powders up to 8% (p<0.05). Increases in strawberry powder concentration up to 8% in the Baikseolgi formulation significantly increased the intensities of sensory color, flavor, and taste attributes; on the other hand, the intensities of sensory moistness and chewiness decreased significantly (p<0.05). Results from the consumer test revealed that control received the highest acceptability scores in all attributes but 4% sample also obtained the competitive scores. Finally, Pearson correlation analysis revealed several very highly significant linear correlation between the means used to access physicochemical, sensory properties, and consumer preferences.

Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay

  • Keawsawasvong, Suraparb;Ukritchon, Boonchai
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.235-252
    • /
    • 2016
  • This paper presents a new numerical solution of the ultimate lateral capacity of rectangular piles in clay. The two-dimensional plane strain finite element was employed to determine the limit load of this problem. A rectangular pile is subjected to purely lateral loading along either its major or minor axes. Complete parametric studies were performed for two dimensionless variables including: (1) the aspect ratios of rectangular piles were studied in the full range from plates to square piles loaded along either their major or minor axes; and (2) the adhesion factors between the soil-pile interface were studied in the complete range from smooth surfaces to rough surfaces. It was found that the dimensionless load factor of rectangular piles showed a highly non-linear function with the aspect ratio of piles and a slightly non-linear function with the adhesion factor at the soil-pile interface. In addition, the dimensionless load factor of rectangular piles loaded along the major axis was significantly higher than that loaded along the minor axis until it converged to the same value at square piles. The solutions of finite element analyses were verified with the finite element limit analysis for selected cases. The empirical equation of the dimensionless load factor of rectangular piles was also proposed based on the data of finite element analysis. Because of the plane strain condition of the top view section, results can be only applied to the full-flow failure mechanism around the pile for the prediction of limiting pressure at the deeper length of a very long pile with full tension interface that does not allow any separation at soil-pile interfaces.

Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept

  • Bouzid, Dj. Amar;Bhattacharya, S.;Dash, S.R.
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.379-399
    • /
    • 2013
  • In practice, analysis of laterally loaded piles is carried out using beams on non-linear Winkler springs model (often known as p-y method) due to its simplicity, low computational cost and the ability to model layered soils. In this approach, soil-pile interaction along the depth is characterized by a set of discrete non-linear springs represented by p-y curves where p is the pressure on the soil that causes a relative deformation of y. p-y curves are usually constructed based on semi-empirical correlations. In order to construct API/DNV proposed p-y curve for clay, one needs two values from the monotonic stress-strain test results i.e., undrained strength ($s_u$) and the strain at 50% yield stress (${\varepsilon}_{50}$). This approach may ignore various features for a particular soil which may lead to un-conservative or over-conservative design as not all the data points in the stress-strain relation are used. However, with the increasing ability to simulate soil-structure interaction problems using highly developed computers, the trend has shifted towards a more theoretically sound basis. In this paper, principles of Mobilized Strength Design (MSD) concept is used to construct a continuous p-y curves from experimentally obtained stress-strain relationship of the soil. In the method, the stress-strain graph is scaled by two coefficient $N_C$ (for stress) and $M_C$ (for strain) to obtain the p-y curves. $M_C$ and $N_C$ are derived based on Semi-Analytical Finite Element approach exploiting the axial symmetry where a pile is modelled as a series of embedded discs. An example is considered to show the application of the methodology.

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

광 위상 공액기가 적용된 WDM 시스템에서 광섬유 분산 계수 변동에 따른 보상 특성 (Compensation Characteristics Dependence on Variation of Fiber Dispersion in WDM Systems with Optical Phase Conjugator)

  • 이성렬;박경호;정명래
    • 한국전자파학회논문지
    • /
    • 제15권5호
    • /
    • pp.517-524
    • /
    • 2004
  • 광 위상 공액기(OPC: Optical Phase Conjugator)가 전체 전송 거리의 중간이 아닌 곳에 위치한 8-채널 WDM 시스템에서 두 전송 구간의 총 분산량 변동에 따른 각 채널의 보상 특성을 NRZ 형식과 RZ 형식별로 살펴보았다. 신호파를 공액파로 만드는 OPC의 비선형 매질로는 광대역 특성을 나타낼 수 있는 HNL-DSF(Highly- Non-linear Dispersion Shifted Fiber)를 사용했다. 우선 OPC를 중심으로 두 전송 구간의 총 분산량이 서로 동일하지 않은 WDM 전송 시스템에서는 전송 파형 형식으로 NRZ보다 RZ를 사용한 경우가 안정된 품질 유지에 더욱 유리하다는 것을 확인하였다. 또한 NRZ 파형 전송의 경우 OPC를 중심으로 두 전송 구간의 총 분산량을 동일하게 설정하는 것보다 상대적으로 길이가 짧은 전송 구간의 총 분산량을 길이가 긴 전송 구간의 총 분산량에 비해 작게 설정하여야 양호한 보상이 이루어지는 것을 확인하였다.

비정상 잡음환경에서 음질향상을 위한 적응 임계 치 알고리즘 (Adaptive Threshold for Speech Enhancement in Nonstationary Noisy Environments)

  • 이수정;김순협
    • 한국음향학회지
    • /
    • 제27권7호
    • /
    • pp.386-393
    • /
    • 2008
  • 본 논문에서는 비정상 잡음환경에서 음질향상을 위한 새로운 방법을 제안한다. 정상 잡음환경에서 음질향상을 위한 잡음제거 방법으로 주파수 차감법이 잘 알려져 있다. 그러나 실제 잡음환경은 대 부분 비정상적인 특성을 나타낸다. 제안한 방법은 다양한 잡음 과 비정상 환경에서 잘 동작 할 수 있도록 적응 임계 치를 위한 자동제어 파라미터를 사용한다. 특히, 자동제어 파라미터는 a posteriori SNR을 이용한 선형함수를 적용하여 잡음레벨의 증감에 따라 적응 임계 치를 제어한다. 제안한 알고리즘은 음질향상을 위해 Hangover (HO)을 이용한 주파수 차감법과 결합한다. 알고리즘의 성능은 다양한 잡음환경에서 ITU-T P.835 signal distortion (SIG)와 segment signal to-noise ratio (SNR)로 평가하여 (HO)을 이용한 음성검출과 minimum statistics (MS) 방법에 비해 우수한 결과를 나타냈다

비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합 (The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm)

  • 장정훈;조호상;장원우;강봉순
    • 융합신호처리학회논문지
    • /
    • 제12권3호
    • /
    • pp.163-168
    • /
    • 2011
  • 본 논문은 감마보정을 위한 비선형 곡선 알고리즘의 개선에 관한 연구이다. 기존의 비선형 감마 곡선 생성 방법은 Gauss-Jordan 역행렬을 적용한 최소 자승 다항식(Least Square Polynomial)을 사용하였다. 이 방법은 다항식 계수 값 계산 과정 중 고차행렬의 역행렬 연산에서 $10^{-11}$ 이하의 매우 작은 값은 절단함으로써 곡선접합의 정밀도가 감소된다. 또한 입력으로 사용되는 샘플 포인트가 10-bit 기준으로 0~1023의 밝기 값에 대하여 고루 분포되어있는 경우에만 정확한 동작이 가능하다. 본 논문은 이러한 기존 알고리즘의 단점을 보완하기 위하여, 고차 다항식의 계수 값을 반데몬드 행렬(Vandemond Matrix)에 SVD분해(Singular Value Decomposition)와 QR분해법(QR Decomposition)을 적용하여 행렬의 고유치와 직교성분만으로 연산하였다 또한, 입력 데이터의 구간을 분할하여 각 구간의 다항식을 생성하고, 새롭게 생성된 다항식을 이용하여 곡선 접합을 수행하도록 하였다. 입력 데이터와 곡선 접합결과의 평균제곱오차(Mean Square Error: MSE)와 표준편차(Standard Deviation: STD)를 통한 오차율 비교 결과 최하위 비트(Least Significant Bit: LSB) 에러 범위에서 MSE가 약 $10^{-9}$ 이고 STD는 약 $10^{-5}$로 정밀도가 향상되었다.

선형 보간법 및 공간 가중치를 이용한 Salt and Pepper 잡음 제거 (Salt and Pepper Noise Removal using Linear Interpolation and Spatial Weight value)

  • 권세익;김남호
    • 한국정보통신학회논문지
    • /
    • 제20권7호
    • /
    • pp.1383-1388
    • /
    • 2016
  • 영상 신호처리는 다양한 분야에서 활용되고 있으며, 영상 데이터는 전송 과정에서 여러 가지 원인으로 열화가 발생된다. 일반적으로 salt and pepper 잡음 환경에 의해 훼손된 영상의 잡음을 제거하는 대표적인 방법에는 CWMF, A-TMF, AWMF 등이 있으며 이 필터들은 고밀도 잡음 환경에서 잡음제거 특성이 다소 부족하다. 따라서 본 논문에서는 중심화소가 비잡음인 경우 원 화소로 대치하고, 잡음인 경우 국부 마스크를 네 방향으로 세분화하여 선형 보간법을 이용하여 원 화소를 추정하고 추정된 화소에 공간 가중치를 적용하여 처리하는 알고리즘을 제안하였다. 제안한 알고리즘은 salt and pepper 잡음(P = 50%)에 훼손된 House 영상에서 26.86[dB]의 높은 PSNR을 보이고 있고, 기존의 CWMF, A-TMF, AWMF에 비해 각각 16.46[dB], 12.28[dB], 12.32[dB] 개선되었다.