• Title/Summary/Keyword: highly heating value

Search Result 33, Processing Time 0.022 seconds

Characteristics of Crude Lipoxygenase in Chinese Cabbages (배추 Lipoxygenase 의 특성)

  • Kim, Dong-Kyoung;Han, Kee-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.710-715
    • /
    • 1997
  • Inactivation of lipoxygenase activity in Chinese cabbage was shown after salting and heat treatments. Crude lipoxygenase was obtained from treatment of $(NH_{4})_{2}SO_{4}$. Lipoxygenase activity in Chinese cabbage was about 50% after 20 hrs of salting in 13% (w/v) concentration. After heating at $90^{\circ}C$ for 15 min, residual activity of lipoxygenase was about 50%. Inactivation of lipoxygenase was highly accelerated by increasing temperature and heating time. Decimal reduction time (D-value) were 42, 20 and 14 min at 70, 80 and $90^{\circ}C$, respectively. When cabbage was soaked in 0.05 M $CaCl_{2}$ and heated at $55^{\circ}C$ for 1.5 hr, higher activity of crude lipoxygenase was found compared with the heat treatment without $CaCl_{2}$.

  • PDF

Quality Analysis for Recycle of the Drained Soybean Boiling Water Discarded in the Mass Production of Fermented Soy Foods (장류식품 대량제조시 폐기되는 콩 삶은 물의 재활용을 위한 품질특성 분석)

  • Song, Hyo-Nam
    • Korean journal of food and cookery science
    • /
    • v.29 no.5
    • /
    • pp.525-531
    • /
    • 2013
  • Nutritional components and quality characteristics of drained soybean boiling water(DBW), which is discarded in the mass production of fermented soy foods, were compared with raw soybean(Control) and Cheonggukjang(CGJ) to provide the basic data for its recycle. The contents of moisture, crude protein, crude lipid and crude ash of DBW were shown as 87%, 2.2%, 0.15% and 1.42%, respectively. Decreased total amino acid of 1,677.8 mg/100g in DBW was comparable with 29,051.1 mg/100g in control, however, there was no great difference in the proportion of essential amino acid to the total. While the total sugar contents were decreased in both DBW and CGJ with 8.39% and 7.17% each from the control of 11.50%, the reducing sugars were increased with higher amount of 6.44% in CGJ and 8.30% in DBW than 5.60% in control. pH of DBW was lower than both of the control and CGJ. Hunter's color values revealed the increase of redness(a value) and yellowness(b value) of DBW and CGJ suggesting that Maillard reaction products were produced by the heating and fermentation process. Polyphenol compounds were highly abundant in CGJ of 0.74 tannic acid equivalent(mg/g) followed by similar low amounts of 0.33 and 0.29 tannic acid equivalent(mg/g) in DBW and control, respectively. Antioxidative activity determined by Electron Donating Ability(%) using DPPH radical showed that CGJ, of which polyphenols were the highest, has the strongest electron donating ability with the lowest $EC_{50}$ value of 5.91 mg/mL. DBW was much lower but similar with the control. From the above results the drained soybean boiling water was shown to have many nutritional and functional components as much as soybean, therefore, it could be a potent reusable food material.

Highly Efficient Cold Sputtered Iridium Oxide Films for Polyimide based Neural Stimulation Electrodes

  • Kim, Shin-Ae;Kim, Eui-Tae;Kim, Sung-June
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.199-204
    • /
    • 2009
  • Iridium oxide films (IROFs) have been extensively studied as a material for electrical stimulation of neurons, as iridium oxide has higher charge storage capacity than other metal films. More recently, sputtered iridium oxide film (SIROF) has been studied, because it can be made more conveniently than activated iridium oxide film (AIROF). Typically, the SIROFs are grown at temperatures from 400 to 600 $^{\circ}C$. However, such high temperatures cannot be used when the iridium oxide (IrOx) film is to be deposited on a flexible polymer material, such as polyimide. In this paper, we show that we can still obtain excellent characteristics in SIROFs grown without heating (cold SIROF), by optimizing the growth conditions. We show that the oxygen flow rate is a critical parameter for controlling the surface properties of a cold SIROF. At an oxygen flow rate of 12 seem, the cold SIROF exhibited a charge storage capacity (CSC) of 60 mC/cm$^2$, which is comparable to or better than other published values for iridium oxide films including heated SIROFs. The film produced under these conditions also had the minimum impedance value of all cold SIROFs deposited for this study. A stability test and biocompatibility test also demonstrated the superiority of the optimized cold SIROF.

Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating

  • Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2015
  • $TiH_2$ nanopowder was made by high energy ball milling. The milled $TiH_2$ and CNT powders were then simultaneously synthesized and consolidated using pulsed current activated sintering (PCAS) within one minute under an applied pressure of 80 MPa. The milling did not induce any reaction between the constituent powders. Meanwhile, PCAS of the $TiH_2$-CNT mixture produced a Ti-TiC composite according to the reaction ($0.92TiH_2+0.08CNT{\rightarrow}0.84Ti+0.08TiC+0.92H_2$, $0.84TiH_2+0.16CNT{\rightarrow}0.68Ti+0.16TiC+0.84H_2$). Highly dense nanocrystalline Ti-TiC composites with a relative density of up to 99.7% were obtained. The hardness and fracture toughness of the dense Ti-8 mole% TiC and Ti-16 mole% TiC produced by PCAS were also investigated. The hardness of the Ti-8 mole% TiC and Ti-16 mole% TiC composites was higher than that of Ti. The hardness value of the Ti-16 mole% TiC composite was higher than that of the Ti-8 mole% TiC composite without a decrease in fracture toughness.

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis (촉매열분해를 이용한 백합나무 바이오오일의 연료 특성)

  • Chea, Kwang-Seok;Jeong, Han-Seob;Ahn, Byoung-Jun;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.

Developing Polyclonal Antibody-based Indirect-ELISA to Detect Anthracnose Inocula Prior to Soybean Sprout Rot

  • Park, Soo-Bong;Lim, Young-Ji;Lee, Jung-Han;Han, Ki-Soo;Lee, Sun-Cheol;Shim, Chang-Ki;Kang, Jin-Ho;Bae, Dong-Won;Kim, Dong-Kil;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.252-257
    • /
    • 2004
  • We developed a polyclonal antibody based-ELISA system to monitor inocula accurately and rapidly before onset of anthracnose on soybean sprouts. Titer of mouse antisera against conidia of Colletotrichum gloeosporioides, determined by indirect ELISA, was high enough to be detectable up to ${\times}$25,600 dilutions. Both PAb1 and PAb2 had the highest level of reactivity to Colletotrichum gloeosporioides. Absorbance readings exceeded 0.15. Sensitivity of PAb to C. gloeosporioides was precise enough to detect spore concentration as low as 500 conidia/well by indirect ELISA. Both antibodies are very sensitive and highly specific to the target pathogen Colletotrichum gloeosporioides, apparently discriminating other unrelated pathogen, or epiphytes. This kit fulfills the requirements far detecting inocula before infection and onset of anthracnose. Our ELISA system should also be feasible to detect C. acutatum (Mungbean sprouts rot) and G. cingulata (C. gleosporioides), (apple, pepper). It was remarkable that absorbance value was not reduced even after 4 consecutive washings (Fig.4), suggesting that antigenic determinants are on the surface of conidia. Antigenic determinant was characterized by heating and enzyme treatment: Both PAb1 and PAb2 bind to protein epitope that does not contain residue of amino acid, arginine, and Iysine, even though more work needs to be done.

The Antioxidative Effects of Maillard Reaction Mixtures of Oligosaccharides (올리고당의 Maillard 반응물질의 유지에 대한 항산화효과)

  • Lee, Su-Mi;Ahn, Myung-Soo
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.2
    • /
    • pp.195-200
    • /
    • 1997
  • The purposes of this study were to investigate the Maillard reactions of some oligosaccharides with lysine and the antioxidative effects of the ethanol extracts from their reaction mixtures on the soybean oil. The Maillard reactions were carried out of 2% oligosaccharides such as palatinose (PN), fructooligosaccharide (FO), isomaltooligosaccharide (IMO) with 2% lysine (L) for 24 hours heating at 60, 80, $100^{\circ}C$. The color intensity of Maillard reaction mixtures were determined by UV-VIS spectrophotometer upon reaction time and temperature. And the antioxidative effects on the soybean oil of each ethanol extract from Maillard reaction mixture of each oligosaccharide were measured by peroxide value (POV). POV's of soybean oil including reaction extracts were determined regularly every 2 days during 20 days storaged at $60{\pm}1^{\circ}C$. The results were obtained as follows: 1. The color intensity of the Maillard reaction mixtures were raised highly as the browning temperature and time increased. The color intensity of PN L browning mixture was the highest. The order of high color intensity at $100^{\circ}C$ was PN L>FO L>Glu L>IMO L. 2. Comparing the antioxidative effect of Maillard reaction product (at $100^{\circ}C$, for 12 hours) of each oligosaccharide to that of BHT and TBHQ, the order of high antioxidative effect was TBHQ>IMO L>BHT>Glu L>PN L>FO L. 3. From these results, it was known that PN L shown as high brown color intensity was appeared low antioxidative effect, while IMO L shown as low brown color intensity was appeared high antioxidative effect. So, it was recognized that there was no relation between brown color intensity and antioxidative effect.

  • PDF

Finite Element Analysis on the Strength Safety of a Fuel Tank for Highly Compressed Gas Vehicle (수술실 내의 아산화질소($N_2O$) 노출평가)

  • Baek, Jong-Bae;Uhm, Min-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.34-38
    • /
    • 2009
  • Nitrous oxide, which is used as an anesthetic gas, has been shown to be a chronic health hazard. It is necessary to monitor and control the nitrous oxide exposure of the operating theaters staff. In this study, N2O exposure level of the operating nurses is assessed with a GC-ECD. The nitrous oxide gas is collected on a molecular sieve 5A contained in a glass tube and desorbed for 12 hours at $100^{\circ}C$ in heating block. As a result of the test using GC-ECD, calibration curve's $R^2$ of $N_2O$ is 0.9992, LOD is $0.96{\mu}g$/injection, LOQ is $3.21{\mu}g$/injection, desorption efficiency is 94.78 4.50% in average and break through is within 10% compared with the concentration. The average concentration before operation is 5.12ppm and it is 42.3ppm during operation. There are a significant difference showing that the P value is lower than 0.05. Assessing exposure level to nitrous oxide based on nurses' working positions, the exposure levels do not show significant difference( P>0.005). And $N_2O$ in active sampling method is higher than passive sampling method(P<0.05).

  • PDF

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Determination of Thermal Radiation Emissivity and Absorptivity of Thermal Screens for Greenhouse (온실 스크린의 장파복사 방사율 및 흡수율 결정)

  • Rafiq, Adeel;Na, Wook Ho;Rasheed, Adnan;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.311-321
    • /
    • 2019
  • Greenhouse farmers often use thermal screens to reduce greenhouse heating expenses during the winter, and for shade during hot, sunny days in the summer, as it is an inexpensive solution to temperature control relative to other available options. However, accurate measurements of their emitted and absorbed radiations are important for the selection of suitable screens that offer maximum performance. Material's ability to save energy is highly dependent on these properties. Limited studies have investigated the measurement of these properties under natural conditions, but they are only applicable to materials having partial porosities. In this work, we describe a new radiation balance method for determining emissive power and absorptive capacity, as well as reflectivity, transmissivity and emissivity of materials having complete and partial transparency by using pyrgeometer and net radiometer. In this study, four materials with zero porosity, were tested. The emissivity value of PE, LD-13, LD-15 and PH-20 was $0.439{\pm}0.020$, $0.460{\pm}0.010$, $0.454{\pm}0.004$, and $0.499{\pm}0.006$, respectively. All tested samples showed high emitted radiation as compared to absorbed radiation.