• Title/Summary/Keyword: highly dispersed

Search Result 198, Processing Time 0.027 seconds

Fabrication and Photocatalytic Properties of SiO2-TiO2 Composite Nanofibers (SiO2-TiO2계 복합 나노섬유의 제조 및 광활성 연구)

  • Hyun, Dong Ho;Lim, Tae-Ho;Lee, Sung Wook
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.554-558
    • /
    • 2008
  • $(1-x)SiO_2-(x)TiO_2$ composite fibers with various compositions of $TiO_2$ were prepared by electrospinning their sol-gel precursors of titanium (IV) iso-propoxide (TiP), and tetraethyl orthosilicate (TEOS). The surface morphology and structure of sintered composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), simultaneous thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and Fourier transform infrared spectroscopy (FT-IR). As the content of $TiO_2$ in $(1-x)SiO_2-(x)TiO_2$ system was increased the average diameter of composite fibers was proportionally increased. Also, the transformation of $TiO_2$ from anatase to rutile form was inhibited by the highly dispersed $TiO_2$ around $SiO_2$ particles up to $0.6SiO_2-0.4TiO_2$ composite fibers even after calcination at $1000^{\circ}C$. The photocatalytic activity of $SiO_2-TiO_2$ composite fibers was examined for the methylene blue (MB) decomposition which was confirmed using UV-vis/DRS spectra. The experiments demonstrated that the MB in aqueous solution was successfully photodegraded using $SiO_2-TiO_2$ composite nanofibers under UV-visible light irradiation.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Two Novel Families of Short Interspersed Repetitive Elements from the Mud Loach (Misgurnus mizolepis)

  • Lim, Hak-Seob;Kim, Moo-Sang;Kim, Ok-Soon;Kim, Ji-Yeon;Choi, Young-Mi;Ahn, Sang Jung;Lee, Hyung-Ho
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.186-192
    • /
    • 2006
  • Short interspersed repetitive elements (SINEs) are dispersed throughout eukaryotic genomes. These SINEs have been shown to be excellent phylogenetic markers for the closed related species. In this report, we isolated two novel families of SINEs from the mud loach. The two SINE families, mlSINE-L and mlSINE-S, have genomic lengths of about 410bp and 270bp, respectively. 5' and 3' ends of the SINE families are well conserved and highly homologous to each of corresponding ends of RSg-1 and SmaI SINEs. Phylogenetic analysis shows that mlSINEs are unique to the mud loach. A dot blot hybridization experiment shows that mlSINE-L has an estimated copy number of $1{\times}10^3$ per $2{\times}10^9bp$ (2.8 pg) and is more frequently distributed at nuclear matrix attachment regions (MARs) than loop DNAs. The result suggests that mlSINEs may preferentially integrate in or near MARs.

  • PDF

SCR Reaction Activity and SO2 Durability Enhancement in Accordance with Manufacturing Conditions of the V/TiO2 Catalysts (V/TiO2 촉매의 제조조건에 따른 SCR 반응활성 및 SO2 내구성 증진에 대한 연구)

  • Lee, Seung Hyun;Seo, Jeong Uk;Byeon, Sang Geun;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • In this studies, SCR reaction activity and SO2 durability enhancement study on manufacturing conditions of the V/TiO2 catalyst was carried out for the removal of nitrogen oxides generated in the combustion furnace. The catalysts are characterized by XPS, Raman, H2-TPR and SO2-TPD. When the vanadium was contained of 2 wt%, it showed excellent SO2 durability and catalytic activity. and When the tungsten is added as a promotor, the enhancement of reducing ability at a low temperature and reduction of SO2 adsorption capacity improved the reaction activity and SO2 durability. V/W/TiO2 are prepared by the lower pH of vanadium solution, vanadium was highly dispersed on the surface and inhibited the formation of crystalline V2O5. in addition, it was confirmed that this catalyst can be used as excellent resistance to high concentration of CO in the combustion furnace.

Peripheral Neuroblastoma of the Ulnar Nerve : Diagnosis by Fine Needle Aspiration Cytology (척골신경에 발생한 말초성 신경아세포종 -세침흡인 세포검사로 진단된 1례 보고-)

  • Chu, Young-Chae;Kim, Joon-Mee
    • The Korean Journal of Cytopathology
    • /
    • v.4 no.1
    • /
    • pp.45-51
    • /
    • 1993
  • A 30-year-old woman who was diagnosed as peripheral neuroblastoma by fine needle aspiration of a soft mass of the right upper arm is described. She presented a slowly growing, soft mass of the right upper arm for 1 month. The right humerus revealed no abnormal finding on X-ray. Ultrasonogram of the right upper arm revealed a well demarcated, smooth marginated solid mass without invasion of adjacent structures. Fine needle aspiration was done under the impression of soft tissue tumor with undetermined biologic behavior. The aspirates were highly cellular and the tumor cells were dispersed both singly and in clusters of varying size. The clusters occasionally showed a central capillary core and rosette-like structures. The tumor cells were small in size and had a small to medium amount of cytoplasm. Some of them revealed slender cytoplasmic processes. The nuclei showed distinct nuclear membranes, finely clumped chromatin and small conspicuous nucleoli. Cellular pleomorphism or mitotic figure was not definite. These cytologic findings were interpreted as a malignant, non-lymphomatous small round cell tumor, most likely representing peripheral neuroblastoma or Ewing's sarcoma. Final diagnosis was confirmed by simple excision as peripheral neuroblastoma.

  • PDF

Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid (SBS-g-POEM 공중합체, ZIF-8, 이온성 액체에 기반한 고투과성 혼합 매질 분리막)

  • Kang, Dong A;Kim, Kihoon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.44-50
    • /
    • 2019
  • In this paper, we developed mixed matrix membranes (MMMs) consisting of SBS-g-POEM block-graft copolymer, ionic liquid (EMIMTFSI) and ZIF-8 nanoparticles to separate a $CO_2/N_2$ gas pair. The SBS-g-POEM is a rubbery block-graft copolymer synthesized through low-cost free-radical polymerization. The EMIMTFSI was dissolved into the SBS-g-POEM matrix and solution synthesized ZIF-8 nanoparticles were also dispersed into the copolymer matrix. The physico-chemical properties of manufactured membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD), which showed that the components were compatible with each other. The gas separation performance was confirmed by time-lag measurements showing $CO_2$ permeability of 537.0 barrer and $CO_2/N_2$ selectivity of 15.2. The result represents the EMIMTFSI and ZIF-8 nanoparticles improves the gas permeability more than two-times, without significantly sacrificing the $CO_2/N_2$ selectivity.

Effect of vacuum annealing and characterization of diecast ADC12 aluminum alloys (다이캐스팅 공정으로 제조한 ADC12 알루미늄 합금의 물성 향상 및 진공 열처리 효과)

  • Jo, Jihoon;Ham, Daseul;Oh, Seongchan;Cha, Su Yeon;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • We report structural, mechanical, and thermal properties of diecast ADC12 aluminum alloys characterized using synchrotron X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray (EDX) analysis, thermal conductivity (λ), Vickers hardness (Hv), and stress-strain measurements. We also studied the effect of post-annealing performed in a vacuum atmosphere on the mechanical properties of diecast ADC12 alloys. EDX and XRD results revealed that Al2Cu and AlCu3 grains are formed, well dispersed in Al base and highly crystalline. Ultimate tensile strength (UTS) of 307.9 ± 9.1 MPa and elongation of 2.98 ± 0.62 % were estimated. λ was 129.3 ± 0.27 W/m·K and Hv was approximately 130. Both values were significantly higher than the reported values. At annealing temperatures ranging from 25 to 200℃, UTS and Hv values remained constant, while as the annealing temperature increased to 500℃, these values gradually decreased. This is because stabilization of the microstructure improves toughness and ductility.

Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries (Mo2C/Mo2N 나노 입자와 환원된 그래핀 옥사이드가 복합된 나노 섬유 중간층이 적용된 리튬-황 전지)

  • Lee, Jae Seob;Yang, Ji Hoon;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.574-581
    • /
    • 2022
  • Nanofibers comprising reduced graphene oxide (rGO) and Mo2C/Mo2N nanoparticles (Mo2C/Mo2N rGO NFs) were prepared for a functional interlayer of Li-S batteries (LSBs). The well-dispersed Mo2C and Mo2N nanoparticles in the nanofiber structure served as active polar sites for efficient immobilization of dissolved lithium polysulfide. The rGO nanosheets in the structure also provide conductive channels for fast ion/electron transport during charging-discharging and ensured reuse of lithium polysulfide during redox reactions through a fast charge transfer process. As a result, the cell assembled with Mo2C/Mo2N rGO NFs-coated separator and pure sulfur electrode (70 wt% of sulfur content and 2.1 mg cm-2 of sulfur loading) showed a stable discharge capacity of 476 mA h g-1 after 400 charge-discharge cycles at 0.1 C. Furthermore, it exhibited a discharge capacity of 574 mA h g-1 even at a high current density of 1.0 C. Therefore, we believe that the proposed unique nanostructure synthesis strategy could provide new insights into the development of sustainable and highly conductive polar materials as functional interlayers for high performance LSBs.

Characteristics of Separation of Water/Bitumen Emulsion by Chemical Demulsifier (화학적 항유화제에 의한 물/비튜멘 에멀젼의 분리특성)

  • Park, Kuny-Ik;Han, Sam-Duck;Noh, Soon-Young;Bae, Wi-Sup;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • In this study, the separation of water/bitumen emulsion was investigated by chemical demulsification method. Motor oils (GS Caltex Deluxe Gold V 7.5W/30, Hyundai gear oil 85W/140) and asphalt (AP-5, KS M 2201, Dongnam Petrochemical MFG. Co.) were used as model oils in the preliminary experiments to effectively remove water from water/bitumen emulsion. The bitumen extracted from Canadian oilsands was used in this study. The water/oil emulsion was not separated without demulsifiers, and Hyundai motor oil showed higher efficiency of water separation at a low concentration of demulsifier compared with that for GS Caltex motor oil. However, as the concentration increased, the efficiency did not rapidly increase compared with that of GS Caltex motor oil. It was highly speculated that the water phase of Hyundai motor oil was not dispersed well compared with that of GS Caltex motor oil because the viscosity of Hyundai motor oil was much higher than that of GS Caltex motor oil. The demulsifier of higher HLB (hydrophilic - lipophilic balance) value had high separation efficiencies in water/oil emulsion. The TWEEN 20 (polyoxyethylene sorbitan monolaurate solution) showed better separation efficiency than other demulsifiers.

Development of Composite-film-based Flexible Energy Harvester using Lead-free BCTZ Piezoelectric Nanomaterials (비납계 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 압전 나노소재를 이용한 복합체 필름 기반의 플렉서블 에너지 하베스터 개발)

  • Gwang Hyeon Kim;Hyeon Jun Park;Bitna Bae;Haksu Jang;Cheol Min Kim;Donghun Lee;Kwi-Il Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and self-powered devices owing to their excellent mechanical durability and output performance. In this study, we design a lead-free piezoelectric nanocomposite utilizing (Ba0.85 Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solid-state reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 ㎂, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.