• Title/Summary/Keyword: higher-order shear deformation plate theory

Search Result 171, Processing Time 0.022 seconds

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

Static and dynamic behavior of FGM plate using a new first shear deformation plate theory

  • Hadji, Lazreg;Meziane, M. Ait Amar;Abdelhak, Z.;Daouadji, T. Hassaine;Bedia, E.A Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.127-140
    • /
    • 2016
  • In this paper, a new first shear deformation plate theory based on neutral surface position is developed for the static and the free vibration analysis of functionally graded plates (FGPs). Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher order shear deformation theories. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present shear deformation plate theory and the neutral surface concept, the governing equations are derived from the principle of Hamilton. There is no stretching-bending coupling effect in the neutral surface based formulation. Numerical illustrations concern flexural and dynamic behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Vibration and stability analyses of thick anisotropic composite plates by finite strip method

  • Akhras, G.;Cheung, M.S.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.49-60
    • /
    • 1995
  • In the present study, a finite strip method for the vibration and stability analyses of anisotropic laminated composite plates is developed according to the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on the first-order shear deformation theory, the present method gives improved results for very thick plates while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness. A number of numerical examples are presented to show the effect of aspect ratio, length-to-thickness ratio, number of plies, fibre orientation and stacking sequence on the natural frequencies and critical buckling loads of simply supported rectangular cross-ply and arbitrary angle-ply composite laminates.

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

Bending and Dynamic Characteristics of Antisymmetric Laminated Composite Plates considering a Simplified Higher-Order Shear Deformation (역대칭 복합적층판의 단순화된 고차전단변형을 고려한 휨과 동적 특성)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.601-609
    • /
    • 1997
  • Bending and vibration results for a laminated plate base on a simplified higher-order plate theory with four variables are presented. Assuming a constant in-plane rotation tensor through the thickness in Reddy's higher-order shear deformation theory it is shown that a simpler higher-order theory can be obtained with the reduction of one variable without significant loss in the accuracy. This simple higher-order shear deformation theory is then used for predicting the natural frequencies and deflection of simply-supported laminated composite plates. The results obtained for antisymmetrical laminated composite plates compare favorably with third-order and first-order shear deformation theory. The information presented should be useful to composite-structure designers, to researchers seeking to obtain better correlation between theory and experiment and to numerical analysts in checking out their programs.

  • PDF

A Higher-Order Theory for Laminated Composite Plates (적층복합평판을 위한 고차해석이론)

  • 신용석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.65-76
    • /
    • 1994
  • A higher-oder laminated plate theory including the effect of transverse shear deformation is developed to calculate the gross response and the detailed stress distribution. The theory satisfies the continuity condition of transverse shear stress, and accounts for parabolic variation of the transverse shear stresses through the thickness of each layer. Exact closed-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and a simple higher-order theory solutions. The results of the present work exhibit acceptable accuracy when compared to the three-dimensional elasticity solutions.

Analysis of laminated composite plates based on different shear deformation plate theories

  • Tanzadeh, Hojat;Amoushahi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.247-269
    • /
    • 2020
  • A finite strip formulation was developed for buckling and free vibration analysis of laminated composite plates based on different shear deformation plate theories. The different shear deformation theories such as Zigzag higher order, Refined Plate Theory (RPT) and other higher order plate theories by variation of transverse shear strains through plate thickness in the parabolic form, sine and exponential were adopted here. The two loaded opposite edges of the plate were assumed to be simply supported and remaining edges were assumed to have arbitrary boundary conditions. The polynomial shape functions are applied to assess the in-plane and out-of-plane deflection and rotation of the normal cross-section of plates in the transverse direction. The finite strip procedure based on the virtual work principle was applied to derive the stiffness, geometric and mass matrices. Numerical results were obtained based on various shear deformation plate theories to verify the proposed formulation. The effects of length to thickness ratios, modulus ratios, boundary conditions, the number of layers and fiber orientation of cross-ply and angle-ply laminates were determined. The additional results on the same effects in the interaction of biaxial in-plane loadings on the critical buckling load were determined as well.