• Title/Summary/Keyword: higher spectral flow

Search Result 27, Processing Time 0.02 seconds

A FAMILY RESOLVENT COCYCLE AND HIGHER SPECTRAL FLOW

  • Sun, Aihui;Wang, Jian;Wang, Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1387-1407
    • /
    • 2017
  • In this paper, we introduce a family resolvent cocycle and express the Chern Character of Dai-Zhang higher spectral flow as a pairing of a family resolvent cocycle and the odd Chern character of a unitary matrix, which generalize the odd index formula of Carey et al. to the family case.

Characteristics of Bifurcation Phenomena of Symmetric Flow Pattern in a Plane Sudden-Expansion Flow (평면급확장유동내 대칭유동분기현상의 특성에 관한 연구)

  • Cho, Jin-Ho;Lee, Moon-J.;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.33-38
    • /
    • 2001
  • Bifurcation of unstable symmetric flow patterns to stable asymmetric ones in laminar sudden-expansion flow has been numerically investigated. Computations were carried out for an expansion ratio of 3 and over a range of the flow Reynolds numbers by using numerical methods of second-order time accuracy and a fractional-step method that guarantees divergence-free flowfields at all times. The critical Reynolds number above which bifurcation of pitchfork type to asymmetric flow pattern takes place is lower in a flow with a higher expansion ratio, in agreement with the previously reported results. The bifurcation diagrams show that the bifurcation takes place at a Reynolds number, $Re_c = 86.3$, higher than the value that has been reported. The lower critical Reynolds number may be due to deficiencies in their computations which employed SIMPLE-type relaxation methods rather than the initial-value approach of the present study. Characteristics of the flow development during the transition to asymmetric stable flow have been investigated by using spectral analysis of the velocity signals obtained by the simulations.

  • PDF

Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan (축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong;Fukano, Tohru
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.

An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex

  • Kim, Shin-Woong;Lee, Seung-Jae;Park, Cheol-Young;Kang, Donghoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.330-343
    • /
    • 2016
  • This paper presents results of an experimental investigation of vortex-induced vibration (VIV) of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, $f^*$, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity ($V_r$) range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with $f^*$.

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders

  • Le, Thai-Hoa;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2009
  • Studying the spatial distribution in coherent fields such as turbulence and turbulence-induced force is important to model and evaluate turbulence-induced forces and response of structures in the turbulent flows. Turbulence field-based coherence function is commonly used for the spatial distribution characteristic of the turbulence-induced forces in the frequency domain so far. This paper will focus to study spectral coherent structure of the turbulence and induced forces in not only the frequency domain using conventional Fourier transform-based coherence, but also temporo-spectral coherence one in the time-frequency plane thanks to wavelet transform-based coherence for better understanding of the turbulence and force coherences and their spatial distributions. Effects of spanwise separations, bluff body flow, flow conditions and Karman vortex on coherent structures of the turbulence and induced pressure, comparison between turbulence and pressure coherences as well as intermittency of the coherent structure in the time-frequency plane will be investigated here. Some new findings are that not only the force coherence is higher than the turbulence coherence, the coherences of turbulence and forces depend on the spanwise separation as previous studies, but also the coherent structures of turbulence and forces relate to the ongoing turbulence flow and bluff body flow, moreover, intermittency in the time domain and low spectral band is considered as the nature of the coherent structure. Simultaneous measurements of the surface pressure and turbulence have been carried out on some typical rectangular cylinders with slenderness ratios B/D=1 (without and with splitter plate) and B/D=5 under the artificial turbulent flows in the wind tunnel.

Principles and Analytical Applications of Acousto-Optic Tunable Filters

  • Tran, Chieu D.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.1101-1108
    • /
    • 1995
  • Acousto-optic tunable filter is a compact, all solid state electronic dispersive device. It is based on the acousto-optic interaction in an anisotropic crystal. Compared to conventional grating monochromators. the AOTF has no moving parts, wider spectral tuning range (from UV through visible and near-IR to IR), higher throughput, higher resolution, faster scanning (${\mu}s$) and random wavelength access. These features make it possible to use the filter to develop novel instruments which are not possible otherwise. The instrument development and unique advantages of such AOTF based instruments including the multidimensional fluorimeter, the multiwavelength thermal lens spectrometer, and the detectors for HPLC and flow injection analysis are described.

  • PDF

The Analysis of Terrain Height Variance Spectra over the Korean Mountain Region and Its Impact on Mesoscale Model Simulation (한반도 산악 지역의 지형분산 스펙트럼과 중규모 수치모의에서의 효과 분석)

  • An, Gwang-Deuk;Lee, Yong-Hui;Jang, Dong-Eon;Jo, Cheon-Ho
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.359-370
    • /
    • 2006
  • Terrain height variance spectra for the Korean mountain region are calculated in order to determine an adequate grid size required to resolve terrain forcing on mesoscale model simulation. One-dimensional spectral analysis is applied to specifically the central-eastern part of the Korean mountain region, where topographical-scale forcing has an important effect on mesoscale atmospheric flow. It is found that the terrain height variance spectra in this mountain region has a wavelength dependence with the power law exponents of 1.5 at the wavelength near 30 km, but this dependence is steeply changed to 2.5 at the wavelength less than 30 km. For the adequate horizontal grid size selection on mesoscale simulation two-dimensional terrain height spectral analysis is also performed. There is no directionality within 50% of spectral energy region, so one-dimensional spectral analysis can be reasonably applied to the Korea Peninsula. According to the spectral analysis of terrain height variance, the finer grid size which is higher than 6 km is required to resolve a 90% of terrain variance in this region. Numerical simulation using WRF (Weather Research and Forecasting Model) was performed to evaluate the effect of different terrain resolution in accordance with the result of spectral analysis. The simulated results were quantitatively compared to observations and there was a significant improvement in the wind prediction across the mountain region as the grid space decreased from 18 km to 2 km. The results will provide useful guidance of grid size selection on mesoscale topographical simulation over the Korean mountain region.

A Study on the Determination of Rare Earth Elements by Inductively Coupled Plasma Spectrometry (Inductively Coupled Plasma 법을 이용한 희토류원소의 분석에 관한 연구)

  • Beom Suk Choi;Sun Tae Kim;Young Man Kim;Chong Wook Lee
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.382-389
    • /
    • 1985
  • The effect of plasma operational parameters for the determination of rare earth elements(REE) by means of inductively coupled plasma(ICP) spectrometry was investigated. While the increase in the flow rate of carrier gas argon enhanced the sensitivity and lowered the detection limit, significant ionization interferences were observed. The decrease in RF power increased the signal to background ratio. The observation point showing the lowest ionization interference was slightly higher than the position where the spatial profile of the analyte reached the maximum. The detection limits of the spectral lines commonly used for the determination of REE were measured and the spectral lines relatively free from spectral interferences were chosen.

  • PDF

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.