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A FAMILY RESOLVENT COCYCLE AND HIGHER

SPECTRAL FLOW

Aihui Sun, Jian Wang, and Yong Wang

Abstract. In this paper, we introduce a family resolvent cocycle and ex-
press the Chern Character of Dai-Zhang higher spectral flow as a pairing
of a family resolvent cocycle and the odd Chern character of a unitary
matrix, which generalize the odd index formula of Carey et al. to the
family case.

1. Introduction

In [8], Connes and Moscovici established an odd local index formula in the
noncommutative geometry framework, which may be thought of as a far reach-
ing generalisation of the classical index theorem for Toeplitz operators. Moti-
vated by the work due to Coburn et al. [6], Carey et al. introduced the resolvant
cocycle and extended the Connes-Moscovici local index formula to the type II
setting in [3] and [4]. In [10], Higson introduced the residue cocycle and gave
another proof of the Connes-Moscovici local index formula. In [5], Carey et al.
established the relations between the resolvent cocycle and the residue cocycle.

On the other hand, Dai and Zhang defined a higher spectral flow as a K-
group element and showed that this higher spectral flow can be computed
analytically by η̂-forms and is related to the family index in the same way as
the spectral flow is related to the index [9]. In [13], Perrot gave a bivariant
generalization of the Connes-Moscovici local index formula. In [11], Benameur
and Carey defined an bivariant JLO cocycle for a smooth fibration of closed
manifolds and a family of generalised Dirac operators along the fibres. Then
they decomposed the Chern Character of the Dai-Zhang higher spectral flow as
a pairing of the bivariant JLO cocycle and the Chern character of an idempotent
matrix. Motivated by [3] and [11], in this paper, we introduce a family resolvent
cocycle and express the Dai-Zhang higher spectral flow as a pairing of a family
resolvent cocycle and the Chern Character of a unitary which generalize the
odd index formula of Carey et al. to the family case.
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This paper is organized as follows: In Section 2, we recall the definitions
of the Bismut superconnection and the higher spectral flow. In Section 3, we
obtain some norm and trace estimates which will be used in the next Sections.
In Section 4, we introduced a family resolvent cocycle and rewrite the formula
of the Chern Character of the higher spectral flow. In Section 5, we prove our
main theorem and compute the Chern Character of the higher spectral flow by
a family resolvent cocycle.

2. Higher spectral flow

Firstly we recall the definition of the Bismut superconnection. Let M0 be a
(q′ + p) dimensional compact connected manifold, and B0 be a q′ dimensional
compact connected manifold. We assume that π :M0 → B0 is a submersion of
M0 onto B0, which defines a fibration of M0 with fibre Z. For y ∈ B0, π

−1(y)
is then a submanifold Zy of M0. TZ denotes the p-dimensional vector bundle
on M0 whose fibre TxZ is the tangent space at x to the fibre Zπx. We assume
that M0 and B0 are oriented.

We fix a connection for this fibration which amounts to a splitting of the
tangent bundle TM0 into the horizontal bundle THM0 and the vertical bundle
TZ, i.e., TM0 = THM0 ⊕ TZ. Vector X ∈ TB0 will be identified with their
horizontal lifts X ∈ THM0, and T

H
x M0 is isomorphic to Tπ(x)B0 via π∗. Recall

that B0 is Riemannian, so we can lift the Euclidean scalar product gB0
of TB0

to THM0. And we assume that TZ is endowed with a scalar product gZ . Thus
we can introduce in TM a new scalar product gB0

⊕ gZ , and denote by ∇L the
Levi-Civita connection on TM with respect to this metric. Let ∇B0 denote
the Levi-Civita connection on TB0 and we still denote by ∇B0 the pullback
connection on THM0. Let ∇Z = PZ(∇

L) where PZ denotes the projection to
TZ. Let ∇⊕ = ∇B0 ⊕ ∇Z and S = ∇L − ∇⊕ and T is the torsion tensor of
∇⊕. Let SO(TZ) be the SO(n) bundle of oriented orthonormal frames in TZ.
Now we assume that bundle TZ is spin. Let S(TZ) be the associated spinors
bundle and ∇Z can be lifted to give a connection ∇S on S(TZ). Let D be the
tangent Dirac operator. Let E be the vector bundle π∗(∧T ∗B0)⊗S(TZ). This
bundle carries a natural action m0 of the degenerate Clifford module C0(M0).
The Clifford action of a horizontal cotangent vector e∗i ∈ Γ(M0, T

∗

HM0) is given
by exterior multiplication m0(e

∗

i ) = ε(e∗i ) acting on the first factor
∧

T ∗

HM0

in E, while the Clifford action of a vertical cotangent vector simply equals its
Clifford action on S(TZ). Define the connection

∇E,⊕ := π∗∇B0 ⊗ 1 + 1⊗∇S ,(2.1)

ω(X)(Y, Z) := g(∇L
XY, Z)− g(∇⊕

XY, Z),(2.2)

∇E,0
X := ∇E,⊕

X +
1

2
m0(ω(X)),(2.3)

for X,Y, Z ∈ TM0.
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Let {ei}
q′

i=1 be an oriented orthonormal basis of TB0 and {fj}
p
j=1 be an

oriented orthonormal basis of TZ, let c(e∗i ) and c(f
∗

j ) denote the Clifford action.
Then the Bismut superconnection acting on Γ(M,π∗ ∧ (B0)⊗S(TZ)) is define
by

(2.4) B =

q′
∑

i=1

c(e∗i )∇
E,0
ei

+

p
∑

j=1

c(f∗

j )∇
E,0
fj

.

By Theorem 10.17 in [1], we have

(2.5) F = B2 = −

p
∑

j=1

(∇E,0
fj

)2 +

p
∑

j=1

∇E,0

∇
Z
fi

fi
+

1

4
rZ = D2 + F[+],

where D is a family of generalized Dirac operators over B0, F[+] is an operator
with coefficients in Ω≥1(B0) and rZ is the scalar curvature of fibres.

Higher spectral flow, for a family of fiberwise self-adjoint elliptic operators
D = (Db)b∈B0

introduced in [9], is only well defined under the assumption that
the K1 class defined by the family is trivial. Assume that the index bundle of
D0 vanishes and let Q0, Q1 be spectral sections of D0, D1 respectively. If we

consider the total family ˜D = {Db,u} parametrized by B0 × I, then there is

also a total spectral section ˜P = {Pb,u}. Let Pu be the restriction of P over
B × {u}. The (higher) spectral flow sf {(D0, Q0), (D1, Q1)} between the pairs
(D0, Q0), (D1, Q1) is an element in K(B0) defined by

(2.6) sf{(D0, Q0), (D1, Q1)} = [Q1 − P1]− [Q0 − P0] ∈ K(B0).

It is easy to check that sf{(D0, Q0), (D1, Q1)} does not depend on the choice

of the global spectral section ˜P . In this paper we are mainly interested in the
affine path Dt := D + tU−1[D,U ] where D is a family of generalized Dirac
operators over B0 whose index class in K1(B0) is trivial, and U is a given
element of GLN(C∞(M0)). In this case, the endpoints are conjugate and we
consider the higher spectral flow with respect to the spectral sections P0 = P

and P1 = U−1PU , where P is a fixed spectral section for D. It turns out that
the higher spectral flow does not depend on P either and is an invariant of the
principal symbol of D and of the homotopy class of U . We denote it sf(D,U).
Indeed, Dai and Zhang proved the following proposition (for related notations,
see [9]).

Proposition 2.1 ([9]). We have in K0(B0), Ind(TU ) = −sf(D,U).

The next proposition is an easy rephrasing of a result of Dai and Zhang:

Proposition 2.2 ([9]). Let B be the Bismut superconnection associated with

σD, then the cohomology class of the differential form −1

π
1

2

∫ 1

0 Trσ(Bte
−B2

t )dt

coincides with the Chern character of the higher spectral flow, i.e.,

(2.7) Ch(sf(D,U)) =
−1

π
1

2

∫ 1

0

Trσ(Bte
−B2

t )dt.



1390 A. SUN, J. WANG, AND Y. WANG

3. Norm and trace estimates

Throughout this section, let D : domD j H → H be an unbounded self-
adjoint operator on the Hilbert space H. In a number of estimates, we will
also consider a bounded self-adjoint operator A. The operators A that are of
interest satisfy s2+sA+D2 ≥ 0 for all real s ≥ 0. However it is also convenient
at times to assume that ‖ A ‖ is relatively small: ‖ A ‖<

√
2, for example.

This can be achieved by scaling A: see Observation 2 of Section 5 in [3].

Lemma 3.1 (Lemma 5.1 in [3]). Let D be an unbounded self-adjoint operator,

(a) For λ = a+ iv ∈ C, 0 < a < 1/2, s ≥ 0 we have the estimate

(3.1) ‖(λ− (1 +D2 + s2))−1‖ ≤ (v2 + (1 + s2 − a)2)−1/2 ≤
1

1− a
;

(b) If A is bounded, self-adjoint and s2 + sA+D2 ≥ 0 we have

(3.2) ‖(λ− (1 +D2 + s2 + sA))−1‖ ≤ (v2 + (1− a)2)−1/2 ≤
1

1− a
;

(c) If A is bounded, self-adjoint and c = ‖A‖ <
√
2 we have

(3.3) ‖(λ− (1+D2 + s2 + sA))−1‖ ≤ (v2 +(1+ s2− a− sc)2)−1/2 ≤
1

1/2− a
.

Let Q = (1 + s2 +F ), where F is B2 as defined in Section 2 and s ∈ [0,∞).
Define

(λ−Q)−1 =
(

λ− (1 + s2 +D2)
)−1

+
∑

k>0

[(

λ− (1 + s2 +D2)
)−1

F[+]

]k(

λ− (1 + s2 +D2)
)−1

.(3.4)

Then for z ∈ C and Re(z) > p/2, we write Q−z using Cauchy’s formula (see
[12])

(3.5) Q−z =
1

2πi

∫

l

λ−z(λ−Q)−1dλ,

where l is a vertical line λ = a + iv parametrized by v ∈ R with 0 < a < 1/2
fixed. Let T (n) = [F, . . . [F, . . . [F, T ]]], then:

Lemma 3.2 (Compare with Lemma 6.9 in [3]). Let m,n, k be non-negative

integers and T ∈ OPm. Then

(λ−Q)−nT = T (λ−Q)−n + nT (1)(λ−Q)−(n+1)+
n(n+1)

2
T (2)(λ−Q)−(n+2)

+ · · ·+

(

n+ k − 1
k

)

T (k)(λ−Q)−(n+k) + P (λ)

=
k

∑

j=0

(

n+ j − 1
j

)

T (j)(λ−Q)−(n+j) + P (λ),(3.6)
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where the remainder P (λ) has order −(2n+ k −m+ 1) and is given by

(3.7) P (λ) =

k
∑

j=1

(

j + k − 1
k

)

(λ−Q)j−n−1T (k+1)(λ −Q)−j−k.

Corollary 3.3 (Compare with Corollary on Page 484 in [3]). Let n,M be

positive integers and A ∈ OP k, let R = (λ−Q)−1. Then

(3.8) RnAR−n =

M
∑

j=0

(

n+ j − 1
j

)

A(j)Rj + P,

where

(3.9) P =

n
∑

j=0

(

j +M − 1
M

)

Rn+1−jA(M+1)RM+j−n

has order k −M − 1.

We recall Lemma 6.10 in [3], let OP k denote the set of order ≤ k vertical
pseudodifferential operators along the fiber.

Lemma 3.4 (Compare with Lemma 6.10 in [3]). Let k, n be non-negative

integers, and suppose λ ∈ C, a = Re(λ) with 0 < a < 1/2. For A ∈ OP k and

Rs(λ) = (λ− (1 +D2 + s2))−1, we have

(3.10)

‖Rs(λ)
n/2+k/2ARs(λ)

−n/2‖ ≤ Cn,k and ‖Rs(λ)
−n/2ARs(λ)

n/2+k/2‖ ≤ Cn,k,

where Cn,k is constant independent of s and λ (square roots use the principal

branch of log).

Then for the family case, we have:

Lemma 3.5 (Compare with Lemma 6.11 in [3]). Let Aj ∈ OPnj for j =
1, . . . ,m and let 0 < a = Re(λ) < 1/2 as above. We consider the operator

(3.11) RF
s (λ)A1R

F
s (λ)A2 · · ·R

F
s (λ)Am

˜RF
s (λ),

where RF
s (λ) = (λ− (1 + s2 + F ))−1, ˜RF

s (λ) =
(

λ− (1 + s2 + sX + F )
)−1

and

X is self-adjoint, bounded and s2 + sX +D2 ≥ 0. Then for all M ≥ 0

(3.12)

RF
s (λ)A1R

F
s (λ)A2 · · ·Am

˜RF
s (λ)

=
M
∑

|k|=0

C(k)A
(k1)
1 · · ·A(km)

m RF
s (λ)

m+|k|
˜RF
s (λ) + PM,m,F ,

where PM,m,F is of order (at most) −2m −M + 3 + |n|, and k, n are multi-

indices with |k| = k1 + · · ·+ km and |n| = n1 + · · ·+ nm. The constant C(k) is
given by

(3.13)

C(k) =
(|k|+m)!

k1!k2! · · · km!(k1 + 1)(k1 + k2 + 2) · · · (|k|+m)
= (|k|+m)!α(k).
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Lemma 3.6. With the assumptions and notation of the last lemma including

the assumption that Ai ∈ OPni for each i, there is a positive constant C such

that

(3.14) ‖(λ− (1 +D2 + s2))m+M/2+1/2−|n|/2PM,m,F ‖ ≤ C

independent of s and λ (though it depends on M , m and the Ai).

Proof. The remainder PM,m,F in the previous lemma obtained after applying
the pseudodifferential expansion has terms of two kinds. The first kind we
consider are the bookkeeping terms at the end of the proof of the last lemma.
They are of the form

(3.15) P = A
(k1)
1 · · ·A(km)

m R
m+|k|

F
˜RF

with |k| > M .
Next we prove the family term

(3.16) R−(m+M/2+1/2)+|n|/2A
(k1)
1 · · ·A(km)

m R
m+|k|

F
˜RF

is uniformly bounded. We know that

(3.17) RF = R+
∑

d≥1

R(F[+]R)
d.

In order to estimate (3.15), we only need estimate the following term. By
Lemma 3.4 we have

‖ R−(m+M/2+1/2)+|n|/2A
(k1)
1 · · ·A(km)

m

[

Rl1R(F[+]R)
dR(m+|k|−l1−1)

]

‖(3.18)

= ‖ R−(m+M/2+1/2)+|n|/2A
(k1)
1

· · ·A(km)
m Rm+|k|R−(m+|k|)+l1+1(F[+]R)

dR(m+|k|−l1−1) ‖

≤ C0 ‖ R−(m+|k|)+l1+1F[+]R · · ·F[+]RR
(m+|k|−l1−1) ‖

≤ C0 ‖ R−(m+|k|)+l1+1F[+]R
m+|k|−l1R−(m+|k|)+l1+1F[+]R

m+|k|−l1

· · ·F[+]R
m+|k|−l1 ‖

≤ C1,

where 1 ≤ j ≤ i+ k1 + k2 + · · ·+ ki−1 and 0 ≤ k1, k2, . . . , ki−1 ≤M . Then this
term is bounded.

On the other hand, we will prove ˜RF is bounded. By Observation 2 on page
497 in [5], without loss of generality, we assume ‖ X ‖≤

√
2, then

˜RF
s (λ) = (λ − (1 + s2 + sX + F ))−1

=
(

λ− (1 + s2 + sX +D2)− F[+]

)−1

= (λ − (1 + s2 + sX +D2))−1 +
∑

k≥1

(λ − (1 + s2 + sX +D2))−1

×
[

− F[+](λ− (1 + s2 + sX +D2))−1
]k
.(3.19)



A FAMILY RESOLVENT COCYCLE AND HIGHER SPECTRAL FLOW 1393

By Lemma 3.1(c), we obtain

(3.20) ‖(λ− (1 + s2 + sX +D2))−1‖ ≤
1

1/2− a
.

Since ‖X‖ ≤
√
2, we have (1 + s2 + sX +D2))−1 ≤ (1 + s2 + s‖X‖+D2))−1,

then

‖F[+]

(

λ− (1 + s2 + sX +D2)
)−1

‖

= ‖F[+](1 + s2 + sX +D2)−1 (1 + s2 + sX +D2)

λ− (1 + s2 + sX +D2)
‖

≤ ‖F[+](1 + s2 + sX +D2)−1‖ sup
x∈[0,+∞)

∣

∣

∣

1 + x

λ− (1 + x)

∣

∣

∣

≤ ‖F[+](1 +D2)−
1

2 ‖‖(1 +D2)
1

2 (1 + s2 + sX +D2)−1‖

×
1 + x

√

(1 + x− a)2 + v2

≤ ˜C0‖
(1 +D2)1/2

1 + s2 − s‖X‖+D2
‖

1 + x

1 + x− a

≤ ˜C1.(3.21)

Combining these assertions, we see

(3.22) ‖ ˜RF (λ)‖ ≤
C

1
2 − a

.

The other terms are the ones P1, P2, . . . , Pm obtained in the proof of the last
lemma. Recall:

(3.23) P1 = RFA
(M+1)
1 RM+1

F RFA2RF · · ·RFAm
˜RF ,

while a typical summand of P2 is an integer multiple of:

(3.24) A
(k1)
1 R

3+k1−j
F A

(M+1)
2 R

M+j
F RFA3RF · · ·RFAm

˜RF ,

where 1 ≤ j ≤ 2 + k1 and 0 ≤ k1 ≤M .
We work with the typical summand of Pi above, and let

B = A
(k1)
1 A

(k2)
2 · · ·A

(ki−1)
i−1

which has order (k1 + k2 + · · ·+ ki−1) + (n1 + n2 + · · ·+ ni−1) = |k|+ |n|i−1,
where we have used the notation |n|j = n1+n2+ · · ·+nj. We will also use the
notation |n|j+1 = nj+1 + · · ·+ nm, then |n| = |n|j + |n|j+1. We need to show
that

(3.25) R−(m+M/2+1/2)+|n|/2BR
i+1+|k|−j

F A
(M+1)
i R

m+j
F RFAi+1RF · · ·RFAm

˜RF

is bounded independent of s and λ. So, we calculate

R−(m+M/2+1/2)+|n|/2BR
i+1+|k|−j

F A
(M+1)
i R

M+j
F RFAi+1RF · · ·RFAm

˜RF

=
(

R−(m+M/2+1/2−|n|/2)BR(|k|+|n|i−1)/2R(m+M/2+1/2−|n|/2)
)

R|k|/2
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×
(

R−(|k|+|n|i−1)/2R−|k|/2R−(m+M/2+1/2−|n|/2)R
i+1+|k|−j

F R(m+M/2+j−i−1/2−|n|i/2)
)

×
(

R−(m+M/2+j−i−1/2)+|n|i/2A
(M+1)
i R((m+M/2+j−i−1/2)−|n|i/2)+(ni+M+1)/2

)

×
(

R−(m+M/2+j−i−1/2)+|n|i/2−(ni+M+1)/2R
m+j+1
F R(m−i−1)−|n|i+1/2

)

×
(

R−(m−i−1)+|n|i+1/2Ai+1R
(m−i−1)−|n|i+1/2+ni+1/2

)

×
(

R−(m−i−1)+|n|i+1/2−ni+1/2RFR
(m−i−2)−|n|i+2/2

)

×
(

R−(m−i−2)+|n|i+2/2Ai+2R
(m−i−2)−|n|i+2/2+ni+2/2

)

× · · ·

×
(

R−1+(nm−1+nm)/2Am−1R
−(nm−1+nm)/2+nm−1/2+1

)

×
(

R(nm−1+nm)/2−nm−1/2−1RFR
−nm/2

)

Rnm/2Am
˜RF .

(3.26)

Then each bracketed term in the last expression is bounded independent of s
and λ by an application of Lemma 3.4, (3.22) and

(3.27) ‖R|k|/2‖ ≤ (
1

1− a
)|k|/2.

�

4. A family resolvent cocycle

4.1. Resolvent expansion of the higher spectral flow

We require two estimates to guarantee that various operators which arise
from the Cauchy formula and the resolvent expansion are trace class. We
present these as separate lemmas as we will use them repeatedly. The tech-
niques we use in these lemmas are indicative of the methods employed in the
remainder of the proof. The computation begins by recalling the definition of
q and {B, q}.

Definition 4.1. Form the Hilbert space H = C
2⊗C

2⊗L2(M0, S(TZ)⊗π
∗∧∗

(T ∗B0)) acted by A =M2⊗M2⊗Mk×k(C
∞(M0)), where M

2 denotes the set
of the 2 × 2 order matrix. Introduce the two dimensional Clifford algebra in
the form

(4.1) σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

,

and define the grading on H by Γ = σ2 ⊗ σ3 ⊗ 1 ∈ A.

Let u ∈ A be unitary and we introduce the following even operators (i.e.,
they commute with Γ):

(4.2)

q = σ3 ⊗

(

0 −iu−1

iu 0

)

, ˜B = σ2 ⊗ 12 ⊗B,

˜Bq + q ˜B = σ1 ⊗

(

0 [B, u−1]
−[B, u] 0

)

.
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Define Streven(a) = 1
2Tr

even(Γ(a)), then

(4.3) ˜B2
r,s =

˜B2
r + s(1− 2r)σ1 ⊗

(

0 [B, u−1]
−[B, u] 0

)

+ s2.

From Lemma 3.5 and Lemma 3.6, we have:

Lemma 4.2 (Compare with Lemma 7.1 in [3]). Let dimZ = p and π :M0 →
B0 be a fibration. Let m be a nonnegative integer, and for j = 0, . . . ,m let

Aj ∈ OP 0. Define ˜F = σ2 ⊗ 12 ⊗ F on C
2 ⊗ C

2 ⊗ Γ(∧(T ∗B0) ⊗ S(Z)). Let

l be the vertical line v 7→ λ = a + iv for v ∈ R and 0 ≤ a ≤ 1, RF̃
s (λ) =

(λ − (1 + s2 + ˜F ))−1 and ˜RF̃
s (λ) = λ − (1 + s2 + ˜F + s{ ˜B, q}))−1. Then for

r ∈ C and Re(r) > 0 the operator

(4.4) B(s) =
1

2πi

∫

l

λ−p/2−rA0R
F̃
s (λ)A1R

F̃
s (λ)A2 · · ·R

F̃
s (λ)Am

˜RF̃
s (λ)dλ,

is trace class for m > p/2 and the function sm‖B(s)‖l is integrable on [0,∞)
when

(4.5) p+ ε < 1 +m and 1 + ε < m+ 2Re(r).

Lemma 4.3 (Compare with Lemma 7.2 in [3]). Let m be a nonnegative integer,

and for j = 0, . . . ,m let Aj ∈ OP kj , kj ≥ 0. Let l be the vertical line v 7→

λ = a+ iv for v ∈ R and 0 ≤ a ≤ 1, RF̃
s (λ) = (λ − (1 + s2 + ˜F ))−1. Then for

Re(r) > 0 the operator

(4.6) B(s) =
1

2πi

∫

l

λ−p/2−rA0R
F̃
s (λ)A1R

F̃
s (λ)A2 · · ·R

F̃
s (λ)AmR

F̃
s (λ)dλ,

is trace class for Re(r)+m− |k|

2 > 0 and the function sα×‖B(s)‖l is integrable
on [0,∞) when

(4.7) 1 + α+ |k| − 2m < 2(Re(r) − ε).

Lemma 4.4 (Compare with Lemma 7.3 in [3]). With the notation as set out at

the beginning of this section and with RF̃
s (λ) = (λ− (1 + s2 + ˜F ))−1, ˜RF̃

s (λ) =

(λ− (1 + s2 + ˜F + s{B, q}))−1, we have for Re(r) > 0 and any positive integer

M > p− 1 :

Streven
(

q
(

1 + s2 + ˜F + s{ ˜B, q}
)−

p

2
−r

)

=

M
∑

m=1,odd

smStreven
( 1

2πi

∫

l

λ−p/2−rq
(

RF̃
s (λ){ ˜B, q}

)m
RF̃

s (λ)dλ
)

+ sM+1Streven
( 1

2πi

∫

l

λ−p/2−rq
(

RF̃
s (λ){

˜B, q}
)M+1

˜RF̃
s (λ)dλ

)

,(4.8)

where Streven denotes taking supertrace with value in Ωeven(B0).
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Let ˜Br = (1− r) ˜B − rq ˜Bq and ˜Br,s = ˜Br + sq, then

(4.9) ˜Br ≡ ˜Br,0 = σ2 ⊗

(

B + ru−1[B, u] 0
0 B + ru[B, u−1]

)

.

Theorem 4.5. Let n > p = dimZ and l ≤ dimB0. Then

Ch
(

sf(D, u∗Du)
)[l]

(4.10)

=
Γ(n/2)

Γ((n+ l − 1)/2)
√
π

∫ 1

0

Treven
(

u∗[B, u](1 + (B + ru∗[B, u])2)−
n
2

)[l]

dr

=
Γ(n/2)

2Γ((n+ l − 1)/2)
√
π

∫ 1

0

Streven
(d ˜Br

dr
(1 + ˜B2

r )
−

n
2

)[l]

dr.

Proof. From (4.19), (4.29) and (4.41) in [9], we have

(4.11) Ch
(

sf(D, u∗Du)
)

=
−1
√
π

∫ 1

0

Treven
(∂Bt(r)

∂r
exp(−B2

t (r))
)

,

where Bt(r) = Bt(0) + ru[Bt(0), u
−1] and Bt(0) =

√
tψtB, ψt : dyj →

dyj
√
t
.

Taking the l-degree component of Ω(B0) on the last Eq., we obtain

(4.12)

Ch
(

sf(D, u∗Du)
)[l]

=
−1
√
π
t−

l
2

∫ 1

0

Tr[l]
(√

tu−1[B, u] exp(−t(B + ru−1[B, u])2)
)

dr.

By the definition of the Gamma function, we have

(4.13) 1 =
1

Γ(n+l−1
2 )

∫ +∞

0

t
n+l−3

2 e−tdt.

Combining the above equations, and by Lemma 1 in [12] and the following
Lemma 4.6, we have

Ch
(

sf(D, u∗Du)
)[l]

(4.14)

=
−1

Γ(n+l−1
2 )

∫ +∞

0

t
n−3

2 e−t

√

t

π

∫ 1

0

Tr[l]
(

u−1[B, u]e−t(B+ru−1[B,u])2
)

drdt

=
−1

Γ(n+l−1
2 )

√
π

∫ 1

0

∫ +∞

0

Tr[l]
(

t
p−2

2 u−1[B, u]e−t(1+(B+ru−1[B,u])2)
)

drdt

=
−Γ(n2 )

Γ(n+l−1
2 )

√
π

∫ 1

0

Trl
(

u−1[B, u](1 + (B + ru−1[B, u])2)−
n
2

)

dr.

Then similarly to the computations in [3, p. 73], we get Theorem 4.5. �
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Lemma 4.6. The following expression

(4.15)

∫ +∞

0

∫ 1

0

t
n−3

2 e−t
√
tT r[l]

(

u−1[B, u]e−t(B+ru−1[B,u])2
)

drdt

is uniformly convergent.

Proof. Since n > dimZ ≥ 1, then n−3
2 ≥ − 1

2 . By Theorem 4.8 in [9], we have
when t→ 0,

(4.16) t
n−3

2 e−tt−
l
2 Tr[l]

(√
tu−1[B, u]e−t(B+ru−1[B,u])2

)

→ O(t−
1

2 ).

So the above integral is convergent at t = 0.
Let (B + ru−1[B, u])2 = D2

u + F ′

[+], where F
′

[+] is a first order differential

operator with coefficient in Ω≥1(B0). By the Duhamel’s principle and the
Hölder equality, we have

‖ Tr[l]
(

u−1[B, u]e−t(B+ru−1[B,u])2
)

‖1

≤

dimB0
∑

k≥0

tk
∫

△k

‖ u−1[B, u]e−tσ0D
2

uF ′

[+] · · ·F
′

[+]e
−tσkD

2

u ‖1 d△k

≤

dimB0
∑

k≥0

tk
∫

△k

‖ u−1[B, u] ‖‖ e−
t
2
σ0D

2

u ‖σ−1

0

‖ e−
t
2
σ0D

2

u(ε+D2
u)

1

2

‖‖ (ε+D2
u)

−
1

2F ′

[+] ‖ · · · ‖ e−
t
2
σk−1D

2

u ‖σ−1

k−1

‖ e−
t
2
σk−1D

2

u(ε+D2
u)

1

2 ‖

‖ (ε+D2
u)

−
1

2F ′

[+] ‖‖ e
−tσkD

2

u ‖σ−1

k
d△k.(4.17)

By

(4.18) sup
x∈[0,+∞)

(

e−cx(ε+ x)
1

2

)

= e−
1

2
+cε(

1

2c
)

1

2 ,

then

t
n
2
−1e−t ‖ Trl

(

u−1[B, u]e−t(B+ru−1[B,u])2
)

‖1

(4.19)

≤ t
n
2
−1e−t

dimB0
∑

k≥0

tk
∫

△k

L0(tre
−

t
2
D2

u)e−
1

2
(k−1)etε(

1

2
)

k
2

1

t
k
2

1
√
σ0 · · ·σk−1

d△k,

where L0 is constant. By Theorem 8 in [2], then

(4.20) t
n−3

2 e−tt−
l
2Tr[l]

(√
tu−1[B, u]e−t(B+ru−1[B,u])2

)

exponentially decays and is bounded independently of u, and is uniformly con-
vergent, when t→ +∞. �
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Define

(4.21) Cp/2+r,l =
Γ(p/2 + r + l/2− 1/2)

√
π

Γ(p/2 + r)
.

And then, the main result of this section is the following lemma. By the Mellin
transform, we may prove the family case of Lemmas 5.6, 5.8 in [3], by the
associated Lemmas 5.6 and 5.12 in [11], similar to the proof of Lemma 7.4 in
[3], we get:

Lemma 4.7. Let N = [(p + q′)/2] + 1 be the least positive integer strictly

greater than (p+ q′)/2. Then there is a δ′, 0 < δ < 1 such that up to an exact

form on B0,

Ch
(

sf(D, u∗Du)
)[l]

Cp/2+r,l

=

∫ +∞

0

Streven
(

q(1 + s2 + ˜F + s{ ˜B, q})−
p

2
−r

)[l]

ds

=
1

2πi

2N−1
∑

m=1,odd

∫ +∞

0

smStreven
(

∫

l

λ−p/2−rq
(

RF̃
s (λ){ ˜B, q}

)m

×RF̃
s (λ)dλ

)[l]

ds+ holo,(4.22)

where holo is a function of r holomorphic for Re(r) > −(p+ q′)/2 + δ′/2.

4.2. A resolvent cocycle

At this point it is interesting to perform the supertrace, so that we have an
expression which only depends on our original spectral triple (A,H, D).

Definition 4.8. For m ≥ 0, operators A0, . . . , Am, Aj ∈ OP kj and 2Re(r) >
k0 + · · ·+ km − 2m define

(4.23)

〈A0, . . . , Am〉m,s,r

= Treven
( 1

2πi

∫

l

λ−p/2−rA0R
F
s (λ)A1 · · ·AmR

F
s (λ)dλ

)

.

The conditions on the orders and on r are sufficient for the trace to be
well-defined, then:

Lemma 4.9 (Compare with Lemma 7.6 in [3]). For any integers m ≥ 0, k ≥ 1
and operators A0, . . . , Am with Aj ∈ OP kj , and 2Re(r) > k +

∑

kj − 2m, we

may choose r with Re(r) sufficiently large such that

(4.24)

k

∫

∞

0

sk−1〈A0, . . . , Am〉m,s,rds

= − 2

m
∑

j=0

∫

∞

0

sk+1〈A0, . . . , Aj , 1, Aj+1, . . . , Am〉m+1,s,rds.
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Lemma 4.10 (Compare with Lemma 7.7 in [3]). For any integers m ≥ 0,
k ≥ 1and Re(r) sufficiently large, and Aj ∈ OP kj , j = 0, . . . ,m, we have

(4.25)

∫

∞

0

sk〈A0, . . . , Am〉m,s,rds =

∫

∞

0

sk〈Am, A0, . . . , Am−1〉m,s,rds.

Lemma 4.11. For operators A0, . . . , Am, Aj ∈ OP kj , kj ≥ 0, and Re(r)
sufficiently large we have

(4.26)
− 〈A0, . . . , [F,Aj ], . . . , Am〉m,s,r

= 〈A0, . . . , Aj−1Aj , . . . , Am〉m−1,s,r − 〈A0, . . . , AjAj+1, . . . , Am〉m−1,s,r,

and for k ≥ 1
∫

∞

0

sk
[

〈BA0, A1, . . . , Am〉m,s,r − 〈A0, A1, . . . , AmB〉m,s,r

]

ds

= dB0

∫

∞

0

sk〈A0, A1, . . . , Am〉m,s,rds.(4.27)

Proof. The first identity follows from observing that

(4.28) −[F,Aj ] = Rs(λ)
−1Aj −AjRs(λ)

−1,

then

A0R
F
s (λ)A1R

F
s (λ) · · ·

(

RF
s (λ)

−1Aj −AjR
F
s (λ)

−1
)

RF
s (λ)Aj+1R

F
s (λ) · · ·AmR

F
s (λ)

= A0R
F
s (λ)A1R

F
s (λ) · · ·Aj−1AjR

F
s (λ) · · ·AmR

F
s (λ)(4.29)

−A0R
F
s (λ)A1R

F
s (λ) · · ·AjAj+1R

F
s (λ) · · ·AmR

F
s (λ).

We have the equalities
∫

∞

0

sk〈BA0, A1, . . . , Am〉m,s,rds

=

∫

∞

0

skTr
( 1

2πi

∫

l

λ−p/2−rBA0R
F
s (λ) · · ·AmR

F
s (λ)

)

dλ,(4.30)

∫

∞

0

sk〈A0, A1, . . . , AmB〉m,s,rds

=

∫

∞

0

skTr
( 1

2πi

∫

l

λ−p/2−rA0R
F
s (λ) · · ·AmBR

F
s (λ)

)

dλds.(4.31)

Combining the above equations, we obtain
∫

∞

0

sk
[

〈BA0, A1, . . . , Am〉m,s,r − 〈A0, A1, . . . , AmB〉m,s,r

]

ds

=
1

2πi

∫

∞

0

skTr
[

B,

∫

l

λ−p/2−rA0R
F
s (λ) · · ·AmR

F
s (λ)dλ

]

ds

= dB0

∫

∞

0

skTr
(

∫

l

λ−p/2−rA0R
F
s (λ) · · ·AmR

F
s (λ)dλ

)

ds
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= dB0

∫

∞

0

sk〈A0, A1, . . . , Am〉m,s,rds.(4.32)
�

Suspecting that the higher spectral flow is given by pairing a cocycle with
the Chern character of a unitary, we remove the normalisation coming from
Chm(u) from our resolvent formula to define a cocycle. The factor of

√
2πi is

for compatability with the Kasparov product [7].

Definition 4.12. Let C(m) denote the constant −2
√

2πi

Γ
(

(m+1)/2
) . Then, forRe(λ) >

−m/2+ 1/2 and da = [B, a], we define φrm : Am+1 → C with A = C∞(M0) by

(4.33) φrm(a0, . . . , am) = C(m)

∫

∞

0

sm〈a0, da1, . . . , dam〉m,s,rds.

By Lemma 4.9, the condition on r ensures that the integral converges. We
note that this constant C(m) is distinct from C(k) which takes a multi-index k
as its argument.

Proposition 4.13. For p ≥ 1, the collection of functionals φr = {φrm}2N−1
m=1 ,

m = 1, 3, . . . , 2N − 1 odd, such that
(

Bφrm+2 + bφrm
)

(a0, . . . , am)

= − C(m)dB0

∫

∞

0

sm〈a0, [B, a1], . . . , [B, am+1]〉m+1,s,rds,(4.34)

(

Bφr1 + dB0
φr0

)

(a0) = 0,(4.35)

where ai ∈ A. Moreover, there is a δ′, 0 < δ′ < 1, then bφr2N−1(a0, . . . , a2N )
is a holomorphic function of r for Re(r) > −(p+ q′)/2 + δ′/2.

Proof. We start with the computation of the coboundaries of the φrm. Recall
the definition B : Ck+1(A) → Ck(A),

(4.36) Bc(a0, . . . , am) =

k
∑

j=0

c(1, aj , . . . , am+1, a0, . . . , aj−1).

By φrm+2, Lemma 4.9 and Lemma 4.11, we get

(Bφrm+2)(a0, . . . , am+1)

(4.37)

=

m+1
∑

j=0

(−1)j(m+1)φrm+2(1, aj , . . . , am+1, a0, . . . , aj−1)

=

m+1
∑

j=0

C(m+ 2)(−1)j(m+1)

∫

∞

0

sm+2〈1, [B, aj], . . . , [B, am+1], [B, a0], . . . , [B, aj−1]〉m+2,s,rds

=
m+1
∑

j=0

C(m+ 2)

∫

∞

0

sm+2〈[B, a0], . . . , [B, aj−1], 1, [B, aj], . . . , [B, am+1]〉m+2,s,rds
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= − C(m+ 2)
m+ 1

2

∫

∞

0

sm〈[B, a0], . . . , [B, am+1]〉m+1,s,rds

= − C(m)

∫

∞

0

sm〈[Ba0 − a0B], . . . , [B, am+1]〉m+1,s,rds

= − C(m)

∫

∞

0

sm
(

〈Ba0, [B, a1], . . . , [B, am+1]〉m+1,s,r

− 〈a0, [B, a1], . . . , [B, am+1]B〉m+1,s,r

)

ds

− C(m)
∫

∞

0

sm
m+1
∑

j=1

(−1)j〈a0, [B, a1], . . . , [B
2, aj ], . . . , [B, am+1]〉m+1,s,rds

= − C(m)

∫

∞

0

sm
m+1
∑

j=1

(−1)j〈a0, [B, a1], . . . , [B
2, aj ], . . . , [B, am+1]〉m+1,s,rds

− C(m)dB0

∫

∞

0

sm〈a0, [B, a1], . . . , [B, am+1]〉m+1,s,r

)

ds.

Observe that for φr1, we have

(Bφr1)(a0) =
C(1)

2πi

∫

∞

0

sT r
(

∫

l

λ−p/2−rRF
s (λ)[B, a0]R

F
s (λ)dλ

)

ds

=
C(1)

2πi

∫

∞

0

sT r
(

∫

l

λ−p/2−r[B,RF
s (λ)a0R

F
s (λ)]

)

ds

=
C(1)

2πi

∫

∞

0

sT r
(

[B,

∫

l

λ−p/2−rRF
s (λ)a0R

F
s (λ)ds]

)

= dB0

C(1)

2πi

∫

∞

0

s

∫

l

λ−p/2−rRF
s (λ)a0R

F
s (λ)ds

= dB0
C(1)

∫

∞

0

s〈1, a0〉1,s,rds.(4.38)

We now compute the Hochschild coboundary of φrm. From the definitions φrm
and Lemma 4.11, we have

(bφrm)(a0, . . . , am+1)

(4.39)

= φrm(a0a1, a2, . . . , am+1) +

k
∑

j=1

(−1)jφrm(a0, . . . , ajaj+1, . . . , am+1)

+ φrm(am+1a0, a1, . . . , am)

= C(m)

∫

∞

0

sm
(

〈a0a1, [B, a2], . . . , [B, am+1]〉m,s,r
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+

k
∑

j=1

(−1)j〈a0, [B, a1], . . . , aj [B, aj+1] + [B, aj]aj+1, . . . , [B, am+1]〉m,s,r

+ 〈am+1a0, [B, a1], . . . , [B, am]〉m,s,r

)

ds

= C(m)

∫

∞

0

sm
(

〈a0a1, [B, a2], . . . , [B, am+1]〉m,s,r

− 〈a0, a1[B, a2], . . . , [B, am+1]〉m,s,r

)

ds

− C(m)

∫

∞

0

sm
(

〈a0, [B, a1]a2, . . . , [B, am+1]〉m,s,r

− 〈a0, [B, a1], a2[B, a3], . . . , [B, am+1]〉m,s,r

)

ds

...

− C(m)

∫

∞

0

sm
(

〈a0, [B, a1], . . . , [B, am]am+1〉m,s,r

− 〈am+1a0, [B, a1], . . . , [B, am]〉m,s,r

)

ds

=
m+1
∑

j=1

(−1)jC(m)

∫

∞

0

sm
(

〈a0, [B, a1], . . . , [B
2, aj], . . . , [B, am+1]〉m+1,s,r

)

ds.

For m = 1, 3, 5, . . . , 2N − 3, by Eqs. (4.37)-(4.39) we obtain

(4.40)

(

Bφrm+2 + bφrm
)

(a0, . . . , am)

= − C(m)dB0

∫

∞

0

sm〈a0, [B, a1], . . . , [B, am+1]〉m+1,s,rds.

So we just need to check the claim that bφr2N−1 is holomorphic for Re(r) >
−(p+ q′)/2 + δ′ for some suitable δ′. The proof that (4.40) is holomorphic for
m = 2N − 1 is similar to the analyticity proof in Lemma 4.7.

�

5. A family residue cocycle

In this section, we derive a new expression stated as Theorem 5.1 from the
resolvent expansion of the higher spectral flow formula Theorem 4.5. This
leaves us with a formula for higher spectral flow that involves an integral over
the parameter s. By integrating out the s dependence in the formula of The-
orem 5.1, we find a higher spectral flow formula which involves a sum of zeta
functions. One immediately recognises that individual terms in this formula
may be obtained from our resolvent cocycle by using the pseudodifferential
calculus. Thus, from the resolvent cocycle we derive the residue cocycle in the
final section. Our final formula for the higher spectral flow follows immediately
by evaluating the residue cocycle on Ch∗(u

∗).
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The aim of this section is to establish the family higher spectral flow formula
which is summarised in the following result. We compute the Chern Character
of the higher spectral flow from D to uDu∗, where u ∈ A is unitary with [D, u]
bounded. Next we compute the residue of the gamma function Γ(x). For the
meromorphic function Γ(x) which has simple poles at nonnegative integers,
then

(5.1) res(Γ(x),−n) =
(−1)n

n!
.

The ‘constant’ Cp/2+r,l has simple poles at r = 1−(p+l)
2 , and p = dimZ is odd,

l even. Therefore, Γ(p2 +z) is holomorphic at z = 1−(p+l)
2 . For the simple poles

z = 1−(p+l)
2 , by (5.1) we have

res 1−(p+l)

2

C p

2
+z,l = res

z= 1−(p+l)

2

(

Γ(
p+ l

2
+ z −

1

2
)
)

√
π

Γ(p2 + 1−(p+l)
2 )

= resz′=0(Γ(z
′))

√
π

Γ(1−l
2 )

=
1× 3× · · · × (l − 1)

(−1)
l
2 2

l
2

,(5.2)

where we have used Γ(x+ 1) = xΓ(x) and

(5.3) Γ(
1 − l

2
) =

(−1)
l
2 2

l
2

1× 3× · · · × (l − 1)
Γ(

1

2
).

Set Al =
(−1)

l
2 2

l
2

1×3×···×(l−1) , then we have

(5.4) Al × res
z= 1−(p+l)

2

C p

2
+z,l = 1.

With these preliminaries, we can state the main result of the paper.

Theorem 5.1. In the cohomology of B0, the following equality holds

(5.5)

Ch
(

sf(D, u∗Du)
)

=
1

√
2πi

dimB0
∑

l=0

Al

(

res
r= 1−(p+l)

2

(

2N−1
∑

m=1,odd

〈φrm, Chm(u)〉
)[l])

.

Proof. By Lemma 4.7, we have

(5.6)

Cp/2+r,lCh
(

sf(D, u∗Du)
)[l]

=

∫

∞

0

Streven
(

q(1 + ˜F + s2 + s[ ˜B, q])2
)−p/2−r

)[l]

ds.

Then we take residues at r = (1 − (p + l))/2 of both sides, by Lemma 3.1 in
[3], we have

Ch
(

sf(D, u∗Du)
)[l]

(5.7)
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= Alresr= 1−(p+l)

2

(

Cp/2+r,lCh
(

sf(D, u∗Du)
)[l]

)

=
Al

2
res

r=
1−(p+l)

2

∫

∞

0

Streven
(

q(1 + ˜F + s2 + s[ ˜B, q])2
)−p/2−r

)[l]

ds

=
Al

2
res

r= 1−(p+l)

2

[ 1

2πi

2N−1
∑

m=1,odd

∫ +∞

0

smStreven

×
(

∫

l

λ−p/2−rq
(

RF
s (λ){ ˜B, q}

)M
RF

s (λ)dλ
)

ds+ holo
][l]

=
Al

2
res

r= 1−(p+l)

2

[ 1

2πi

2N−1
∑

m=1,odd

2× (−1)
m+1

2

∫ +∞

0

smTreven
(

λ−p/2−r

×
(

u∗R[B, u]R[B, u∗] · · · [B, u]R− uR[B, u∗]R[B, u] · · · [B, u∗]Bdλ
)

ds
)[l]

=
Al

2

1
√
2πi

res
r= 1−(p+l)

2

2N−1
∑

m=1,odd

〈φrm, Chmu− Chmu
∗〉[l]

=
Al

√
2πi

resr= 1−p

2

(

2N−1
∑

m=1,odd

〈φrm, Chmu〉 −
1

2

2N−1
∑

m=1,odd

〈φrm, Chmu+ Chmu
∗〉
)[l]

=
Al

√
2πi

res
r= 1−(p+l)

2

[(

2N−1
∑

m=1,odd

〈φrm, Chm(u)〉
)[l]

+ dB0
resr= 1−p

2

(

2N−1
∑

m=1,odd

(−1)
m+1

2

∫

∞

0

sm〈1, [B, u−1], [B, u], . . . , [B, u−1],

[B, u]〉m+1,s,rds
)[l−1]]

.
�

Then we have the pseudodifferential expansion of the higher spectral flow.

Proposition 5.2. There is a δ′, 0 < δ′ < 1 and 0 ≤ l ≤ dimB0, l even, such

that up to an exact form on B0,

Ch
(

sf(D, u∗Du)
)[l]

Cp/2+r,l

(5.8)

=

∫

∞

0

Streven
(

q(1 + ˜F + s2 + s{ ˜B, q})−p/2−r
)[l]

ds

=
1

2πi

2N−1
∑

m=1,odd

∫

∞

0

smStreven
(

∫

l

λ−p/2−r

2N−1−m
∑

|k|=0

Ckq{ ˜B, q}
(k1) · · ·

· · · { ˜B, q}(km)RF̃
s (λ)

m+1+|k|dλ
)[l]

ds+ holo
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=
2N−1
∑

m=1,odd

2N−1−m
∑

|k|=0

Ck
Γ(p/2 + r +m+ |k|)

Γ(p/2 + r)(m + |k|)!

∫

∞

0

smStreven
(

q{ ˜B, q}(k1) · · ·

· · · { ˜B, q}(km)(1 + ˜F + s2)−(p/2+r+m+|k|)
)[l]

ds+ holo,

where holo is a function of r holomorphic for Re(r) > −(p + q′)/2 + δ′/2.
Consequently the sum of functions on the right-hand side has an analytic con-

tinuation to a deleted neighbourhood of r = (1−p− l)/2 (given by the left-hand

side) with at worst a simple pole at r = (1− p− l)/2.

Proposition 5.3. There is a δ′, 0 < δ′ < 1 and 0 ≤ l < dimB such that

Ch
(

sf(D, u∗Du)
)[l]

Cp/2+r,l

=

2N−1
∑

m=1,odd

2N−1−m
∑

|k|=0

Ck(−1)|k|+m Γ((m+1)/2)Γ(p/2+r+|k|+(m−1)/2)
2(m+|k|)!Γ(p/2+r)

× Streven
(

q{ ˜B, q}(k1) · · · { ˜B, q}(km)(1 + ˜F )−(p/2+r+|k|+(m−1)/2)
)[l]

+ holo,(5.9)

where holo is a function of r holomorphic for Re(r) > −(p + q′)/2 + δ′/2.
Consequently the sum of functions on the right-hand side has an analytic con-

tinuation to a deleted neighbourhood of r = (1−p− l)/2 (given by the left-hand

side) with at worst a simple pole at r = (1 − p − l)/2. Moreover, if [p] = 2n
is even, each of the top terms with |k| = 2N − 1 − m are holomorphic at

r = (1 − p− l)/2, including the one term with m = 2N − 1.

We denote the analytic continuation of a function analytic in a right half-
plane to a deleted neighbourhood of the critical point by putting the function
in boldface. Thus we define the functionals for each integer j ≥ 0:

Strevenj,l

(

q{ ˜B, q}(k1) · · · { ˜B, q}(km)(1 + ˜F )−(|k|+m/2)
)[l]

= resr=(1−(p+l))/2(r − (1− p)/2)jStreven
(

q{ ˜B, q}(k1) · · · { ˜B, q}(km)

× (1 + ˜F )−(p/2+r+|k|+(m−1)/2)
)[l]

.(5.10)

Recall that the σ′

h,js are the symmetric functions of the half-integers 1/2, 3/2,

. . . , h−1/2. Now we start from the formula of Proposition 5.3 and take residues
at r = (1− (p+ l))/2 of both sides and multiply Al,

Ch
(

sf(D, u∗Du)
)[l]

(5.11)

= Al

2N−1
∑

m=1,odd

2N−1−m
∑

|k|=0

Ck(−1)|k|+mresr=(1−(p+l))/2
Γ((m+1)/2)Γ(p/2+r+|k|+(m−1)/2)

2(m+|k|)!Γ(p/2+r)
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× Streven
(

q{ ˜B, q}(k1) · · · { ˜B, q}(km)(1 + ˜F )−(p/2+r+|k|+(m−1)/2)
)[l]

= Al

2N−1
∑

m=1,odd

2N−1−m
∑

|k|=0

(−1)|k|+mΓ((m+ 1)/2)α(k)

2

h
∑

j=0

σh,j

× Strevenj,l

(

q{ ˜B, q}(k1) · · · { ˜B, q}(km)(1 + ˜F )−(|k|+m/2)
)[l]

= Al

2N−1
∑

m=1,odd

2N−1−m
∑

|k|=0

(−1)|k|+(m+1)/2Γ((m+ 1)/2)α(k)

2

h
∑

j=0

σh,j

× Strevenj,l

(

(u[ ˜B, u∗](k1) · · · [ ˜B, u∗](km) − u∗[ ˜B, u](k1) · · · [ ˜B, u](km))

× (1 + ˜F )−(|k|+m/2)
)[l]

.

To understand this formula in terms of cyclic (co)homology and Chern char-
acters, we show that our higher spectral flow formula is obtained by pairing a
cyclic cocycle with the Chern character of a unitary. We note that our resolvent
cocycle φr pairs with normalised chains, so that by Lemma 3.1,

(5.12) φr(Ch∗(u)) = −φr(Ch∗(u
∗))

is modulo functions holomorphic for Re(r) > (1− (p+ q′))/2− δ, then:

Theorem 5.4. Assume that (A,H, B) is a family spectral triple associated the

fibration. For m odd, define functionals φm by

φm(a0, . . . , am) :=

dimB0
∑

l=0

φl(a0, . . . , am) =
√
2πi

dimB0
∑

l=0

2N−1−m
∑

|k|=0

(−1)|k|α(k)

×

h
∑

j=0

σh,jStr
even
j,l

(

a0[B, a1]
(k1) · · · [B, am](km)(1 + F )−|k|−m/2

)

,(5.13)

where h = |k|+(m−1)/2. Then φ = (φm) is a (b, B)-cocycle in the cohomology

of B0 and

(5.14) Ch(sf(D, u∗Du)) =
1

√
2πi

2N−1−m
∑

|k|=0

〈φm, Chm(u)〉.
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