• 제목/요약/키워드: higher heating value

검색결과 343건 처리시간 0.046초

증기가압형 처리공정을 이용한 유기성 폐기물의 건조처리 및 고형연료화 (Dehydration and RDF Production of Organic Wastes with Pressurized Hydrothermal Treatment Process)

  • 박세준;최영찬;최인규
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.439-446
    • /
    • 2009
  • This paper investigates the dehydration and RDF (Refuse Derived Fuel) production of organic wastes, livestock manure and sewerage sludge with pressurized hydrothermal treatment process. The renewable technology for the organic wastes must involve short treatment time required, reusable energy source, anti-odor and viruses, low cost for the treatment, and well-fertilization. The pressurized hydrothermal treatment process promotes to evaporate moisture in the waste after being shortly treated in a reactor, which uses steam and heat supplied by an external boiler. By the pressurized steam, the cell walls of the waste break and effectively release the internal moisture. Then, the dried waste can be mixed with waste vinyls to produce RDF with a higher heating value as high as 6,700 kcal/kg.

열처리를 통한 미세조류로부터 바이오수소 생산 향상 (Enhanced of Bio-Hydrogen Production from Microalgae by Thermal Pre-Treatment)

  • 이채영;최재민
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.275-281
    • /
    • 2013
  • This study was conducted to increase the amount of bio-hydrogen production from microalgae(Chlorella vulgaris) in batch reactors by thermal pre-treatment. The optimization of thermal pre-treatment was conducted using statistic experimental design of response surface methodology. Two experimental parameters of temperature and reaction time were considered. The optimization condition was founded at the coded variables of <0.52, -0.07> corresponding to the experimental of heating temperature of $95.6^{\circ}C$ and reaction time of 57.9 min, respectively. Under the optimal condition, the maximum hydrogen production was predicted to 25.3mL $H_2/g$ dry cell weight (dcw), which was 9.1 times higher value of control(2.8mL $H_2/g$ dcw).

백서에서 발생시킨 유방암의 방사선 치료시 온열요법이 미치는 영향에 관한 실험적 연구 (An Experimental Study on The Effect of Hyperthermia on Radiation Therapy of Mammary Carcinoma of Rat)

  • 박찬일;허승재;하성환
    • Radiation Oncology Journal
    • /
    • 제2권2호
    • /
    • pp.167-171
    • /
    • 1984
  • The renewed interest in the use of hyperthermia in cancer therapy is based on radiobiological and clinical evidence indicating that there may be significant thereapeutic advantages with the use of hyperthermia alone or combined with irradiation plus heat. Authors performed the experiment using the chemically induced mammary carcinoma of rats to observe the difference in temperature changes between tumor and normal tissue during heat, and to compare the response of the tumors to radiation alone and to radiation plus hyperthermia. The results were as follows 1. Temperature of tumors was significantly higher than in the normal tissue during heating and the difference was about $1.5^{\circ}C$. 2. $TCD_{50}$ in radiation alone and hyperthermia immediately following radiation was 1,282 rad and 795 rad, respectively and TER value was 1.81.

  • PDF

국내무연탄층에 함유된 메탄자원의 잠재력과 그 이용가능성 (Coalbed methane potential for Korean anthracite and possibility of its utilization)

  • 박석환
    • 자원환경지질
    • /
    • 제32권1호
    • /
    • pp.113-121
    • /
    • 1999
  • Coal is both source rock and reservoir rock for the coalbed gas. Coalbed gas. Coalbed gas is predominantly methane and has a heating value of approximatly 1000 BTU/$ft^3$. Most of methane is stored in the coal as a monomolecular layer adsorbed on the internal surface of the coal matrix. The amount of methane stored in coal is related to the rank and the depth of the coal. THe higher the coal rank and the deeper the coal seam is presently buried, the greater its capacity to hold gas. Most of Korean Coal is anthracite or metaanthracite, Ro. 3.5~5.5%, and total reserves are 1.6 billion metric tons. The domestic demand for coal was drastically decreased and the rationalization policy carried out from 1987 on coal industry. Now that a large number of coal mines was closed only a few mines continued to produce not more than 5 million tons for year. It is therefore recommended to formulate a strategy to explore and exploit the resources of coalbed methane in Korea.

  • PDF

충돌분류시스템의 열전달 특성에 관한 수치적 연구 (Numerical Study on Heat Transfer Characteristics in Impinging Air Jet System)

  • 금성민;김동춘
    • 한국태양에너지학회 논문집
    • /
    • 제23권4호
    • /
    • pp.55-61
    • /
    • 2003
  • Heat transfer characteristics for an air jet vertically impinging on a flat plate with a set of hybrid rods was investigated numerically using the RNG k-$\varepsilon$turbulent model. A commercial finite-volume code FLUENT is used. The rods had cross sections of half circular and rectangular shapes. The heating surface was heated with a constant heat flux value of $1020W/m^2$. Parameters investigated were the jet Reynolds number, nozzle -to-plate spacing, the rod pitch and rod-to-plate clearance. The local and average Nusselt number were found to be dependent on the rod pitch and the clearance because installing rods disturbed the flow. Higher convective heat transfer rate occurred in the whole plate as well as in the wall jet region.

옥상녹화 평지붕의 표면온도 저감효과에 대한 고찰 (A Consideration On The Surface Temperature Reducing Effect Of Green Roof System Flat Roof)

  • 이두호;이응직
    • KIEAE Journal
    • /
    • 제12권3호
    • /
    • pp.83-88
    • /
    • 2012
  • This study analyzed the measured value came out by the field test to verify the surface temperature reduction of the flat roof due to green roof, and confirmed the influence of the green roof based on it, and assessed the possibility of saving structures' energy and reducing $CO_2$ emission of structures. For the actual measurement, the differences of the average atmospheric temperature of the green roof and non-green roof flat roof were $8.67^{\circ}C$ and $0.787^{\circ}C$, and the average floor temperature gaps were $11^{\circ}C$ and $2.008^{\circ}C$ in October and November respectively. It was expected that if it's measured on around summer solstice that the temperature gets higher, the deviation of the surface temperature should be bigger, and it was confirmed that the green roof eventually raises insulating effect of structures and will influence on cooling and heating effects such as energy saving and insulating.

하이브리드 로드를 갖는 충돌공기제트의 열전달특성에 관한 연구 (Heat Transfer Characteristics in Impinging Air Jet with Hybrid Rod)

  • 표창기;박상록;김동춘;금성민;임장순
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.277-283
    • /
    • 2000
  • The heat transfer characteristics for air jet vertically impinging on a flat plate which had a set of hybrid rod were investigated experimentally. The rod had a cross section made with a half of circular cross section and that of rectangular and was installed in front of the plate. The heating surface was given constant heat flux value of 1020 W/$m^2^{\circ]C$ and the problem parameters investigated were jet Reynolds number, nozzle-to-plate spacing and the rod size. The local and local average Nusselt number characteristics were found to be dependent on the rod size because the flow was disturbed by installing the rod. Higher convective heat transfer rate occurred in the whole plate as well as in the stagnation region.

  • PDF

바이오디젤의 난방유로서의 연료특성 (Fuel Qualities of Different Biodiesels in the Gun Type Burner)

  • 김영중;강연구;강금춘;유영선
    • Journal of Biosystems Engineering
    • /
    • 제33권2호
    • /
    • pp.124-129
    • /
    • 2008
  • In this study, fuel qualities including kinematic viscosity and pour point in the various temperature, calorific value and combustion characteristics of two biodiesels based on the soybean and waste oil blended with light oil were investigated and discussed in order to figure out to confirm fuel compatibility taking the place of light oil in the hot air heater or boiler. As biodiesel content ratio increased calorific value of biodiesel decreased, and the difference was 13% between 100%-biodiesel and light oil. In general, pour points of the biodiesels were higher than light oil, and as biodiesel content ratio increased pour point increased. About 15 cSt was the pour point of biodiesels and light oil, which occurred at 3 to $4^{\circ}C$ in the biodiesels and $-25^{\circ}C$ in the light oil. Flame dimensions of biodiesels and light oil were almost same at the same combustion condition in the burner of the hot air heater. CO concentrations in the exhaustion gas were far lower than those of the light oil. Though pour point of biodiesel is a little inferior to light oil, still biodiesel can be an alternative fuel substituting for light oil in combustion system without much modifying the current oil combustion mechanism.

반탄화에 의한 커피박 연료특성 (Fuel Properities of Spent Coffee Bean by Torrefaction)

  • 오도건;김용현;손홍석
    • 신재생에너지
    • /
    • 제9권3호
    • /
    • pp.29-35
    • /
    • 2013
  • This research analyzed the fuel characteristic change of spent coffee bean by torrefaction. The calorific value was increased from 4,974 kcal/kg to 6,075 kcal/kg ($260^{\circ}C$, 30min), 6,452 kcal/kg ($270^{\circ}C$, 30min), 6,823 kcal/kg ($280^{\circ}C$, 30min), 6,970 kcal/kg ($260^{\circ}C$, 30min). The highest energy yield was obtained when the spent coffee bean were torrefied on the condition of $280^{\circ}C$, 30min. The moisture absorption rate was decreased from 5.12% to 2.76% when the spent coffee bean were torrefied on the condition of $290^{\circ}C$, 30min. Lignin was increased from 11.33% to 14.39% on the condition of $260^{\circ}C$ 30min. But it did not preferability to torrefy spent coffee bean at temperature of more than $270^{\circ}C$ because lignin decreases to the level that is hard to make pellet.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.