• 제목/요약/키워드: high-throughput tool

검색결과 88건 처리시간 0.025초

마이크로전극어레이형 바이오칩을 이용한 SNP의 검출 (Detection of SNP Using Microelectrode Array Biochip)

  • 최용성;권영수;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.845-848
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Avantor® ACE® UltraCore HPLC/UHPLC 칼럼 가이드 (Avantor® ACE® UltraCore HPLC and UHPLC Columns)

  • Peter Bridge;Ian Phillips;Gemma Lo;Cassandra Rusher
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.4.1-4.15
    • /
    • 2024
  • The Avantor® ACE® UltraCore series encompasses High Performance Liquid Chromatography (HPLC) and Ultra High Performance Liquid Chromatography (UHPLC) columns designed to deliver high throughput and high-efficiency ultra-fast separations. Utilizing ultra-inert solid-core silica particles with monodisperse particle distribution, these columns combine the high efficiency of UHPLC with the operability of HPLC instrumentation, yielding lower backpressure and high-resolution separations suitable for a broad spectrum of analytes. The Avantor® ACE® UltraCore range includes three primary product types: • UltraCore BIO: Designed for large biomolecules (≥5 kDa), these columns offer exceptional performance in separating biologically derived compounds. • UltraCore: Ideal for standard small organic molecules, providing rapid separations for both synthetic and natural mixtures. • UltraCore Super: Equipped with encapsulated bonding technology for small organic molecules in extreme pH conditions, optimal for high pH buffer requirements. The Avantor® ACE® UltraCore columns present a versatile and high-efficiency solution for chromatographic separation needs, accommodating a wide range of molecular sizes and providing enhanced resolution and reduced analysis time. Their adaptability to both HPLC and UHPLC systems, combined with the advantages of solid-core technology, makes them an invaluable tool in analytical and preparative chromatography.

  • PDF

High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox

  • Cho, Dae-Hyun;Cho, Kichul;Heo, Jina;Kim, Urim;Lee, Yong Jae;Choi, Dong-Yun;Yoo, Chan;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1785-1791
    • /
    • 2020
  • In a previous study, the sequential optimization and regulation of environmental parameters using the PhotoBiobox were demonstrated with high-throughput screening tests. In this study, we estimated changes in the biovolume-based composition of a polyculture built in vitro and composed of three algal strains: Chlorella sp., Scenedesmus sp., and Parachlorella sp. We performed this work using the PhotoBiobox under different temperatures (10-36℃) and light intensities (50-700 μmol m-2 s-1) in air and in 5% CO2. In 5% CO2, Chlorella sp. exhibited better adaptation to high temperatures than in air conditions. Pearson's correlation analysis showed that the composition of Parachlorella sp. was highly related to temperature whereas Chlorella sp. and Scenedesmus sp. showed negative correlations in both air and 5% CO2. Furthermore, light intensity slightly affected the composition of Scenedesmus sp., whereas no significant effect was observed in other species. Based on these results, it is speculated that temperature is an important factor in influencing changes in algal polyculture community structure (PCS). These results further confirm that the PhotoBiobox is a convenient and available tool for performance of lab-scale experiments on PCS changes. The application of the PhotoBiobox in PCS studies will provide new insight into polyculture-based ecology.

UV NIL공정에서 액적의 양과 도포방법에 따른 기포형성 연구 (A Study on the Formation of Air Bubble by the Droplet Volume and Dispensing Method in UV NIL)

  • 이기연;김국원
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4178-4184
    • /
    • 2013
  • 최근 나노임프린트 리소그래피 공정이 마이크로/나노 스케일의 소자 개발에 있어서 경제적으로 대량 생산할 수 있는 기술로 주목 받고 있다. 최근 나노임프린트 기술은 공정의 고속화 및 대면적화를 통한 대량생산 기술로의 전환을 목표로 하고 있다. 자외선경화 방식의 나노임프린트의 경우 상온 및 저압의 장점과 함께 비진공 환경에서 공정이 가능하다면 진공챔버 및 고압 스테이지 등과 같은 고가의 장비가 필요 없게 됨으로써 설비비용을 낮추고 공정시간을 단축하는데 큰 기여를 할 수 있다. 그러나 비진공 환경에서는 기포결함이 종종 발생하게 된다. 본 연구에서는 비진공 환경에서의 자외선경화 방식의 나노임프린트 공정 중 레지스트의 액적도포 방법에 따른 기포형성을 연구하였다. 액적의 양과 액적의 수를 달리하여 도포한 레지스트에 대하여 충전 후 기포결함 발생을 분석하였다.

Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals

  • Fan, Bin;Du, Zhi-Qiang;Gorbach, Danielle M.;Rothschild, Max F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권7호
    • /
    • pp.833-847
    • /
    • 2010
  • In the past decade, there have been many advances in whole-genome sequencing in domestic animals, as well as the development of "next-generation" sequencing technologies and high-throughput genotyping platforms. Consequently, these advances have led to the creation of the high-density SNP array as a state-of-the-art tool for genetics and genomics analyses of domestic animals. The emergence and utilization of SNP arrays will have significant impacts not only on the scale, speed, and expense of SNP genotyping, but also on theoretical and applied studies of quantitative genetics, population genetics and molecular evolution. The most promising applications in agriculture could be genome-wide association studies (GWAS) and genomic selection for the improvement of economically important traits. However, some challenges still face these applications, such as incorporating linkage disequilibrium (LD) information from HapMap projects, data storage, and especially appropriate statistical analyses on the high-dimensional, structured genomics data. More efforts are still needed to make better use of the high-density SNP arrays in both academic studies and industrial applications.

저진공 Single-step UV 나노임프린트 장치 개발 (The Development of Single-Step UV-NIL Tool Using Low Vacuum Environment and Additive Air Pressure)

  • 김기돈;정준호;이응숙;도현정;신흥수;최우범
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.155-156
    • /
    • 2006
  • UV-NIL is a promising technology for the fabrication of sub-100 nm features. Due to non-uniformity of the residual layer thickness (RLT) and a strong possibility of defects, many UV-NIL processes have been developed and some are commercially available at present, most are based on the 'step-and-repeat' nanoimprint technique, which employs a small-area stamp, much smaller than the substrate. This is mainly because, when a large-area stamp is used, it is difficult to obtain acceptable uniform residual layer thickness and/or to avoid defects such as air entrapment. As an attempt to enable UV_NIL with a large-area stamp for high throughput, we propose a new UV-NIL tool that is able to imprint 4 inch wafer in a low vacuum environment at a single step.

  • PDF

Pipeline CORDIC을 이용한 저전력 주파수 옵셋 동기화기 설계 및 구현 (Low-Power Frequency Offset Synchronization Block Design and Implementation using Pipeline CORDIC)

  • 하준형;정요성;조용훈;장영범
    • 대한전자공학회논문지TC
    • /
    • 제47권10호
    • /
    • pp.49-56
    • /
    • 2010
  • 이 논문에서는 pipeline CORDIC(COordinate Rotation DIgital Computer)을 이용한 저전력 주파수 옵셋 동기화기 구조를 제안하였다. 주파수 옵셋 동기화기의 핵심 블록은 주파수 옵셋 추정부와 보상부이다. 제안된 주파수 옵셋 추정부에서는 sequential CORDIC을 사용하여 구현면적을 감소시켰으며 한번에 2 단계씩 CORDIC을 수행하는 방식을 사용하여 연산 속도를 높였다. 또한 제안된 주파수 옵셋 보상부에서는 pipeline CORDIC을 사용하여 구현면적을 줄임과 동시에 계산 속도를 향상시킬 수 있었다. MatLab을 사용하여 제안 구조가 주파수 옵셋을 추정 및 보상하는 function을 검증하였다. 제안 구조에 대하여 Verilog-HDL로 코딩하고 Synopsys tool을 사용하여 합성하여 구현면적을 실험하였다.

Association of the TREML2 and HTR1E Genetic Polymorphisms with Osteoporosis

  • Jung, Dongju;Jin, Hyun-Seok
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.181-187
    • /
    • 2015
  • Osteoporosis is one of the diseases caused by accumulation of effects from complex interactions between genetic and environmental factors. Aging is the major cause for osteoporosis, which normally increases skeletal fragility and bone fracture especially among the elder. "Omics" refers to a specialized research field dealing with high-throughput biological data, such as genomics, transcriptomics, proteomics or metabolomics. Integration of data from multi-omics has been approved to be a powerful strategy to colligate biological phenomenon with multiple aspects. Actually, integrative analyses of "omics" datasets were used to present pathogenesis of specific diseases or casual biomarkers including susceptible genes. In this study, we evaluated the proposed relationship of novel susceptible genes (TREML2, HTR1E, and GLO1) with osteoporosis, which genes were obtained using multi-omics integration analyses. To this end, SNPs of the susceptible genes in the Korean female cohort were analyzed. As a result, one SNP of HTR1E and five SNPs of TREML2 were identified to associate with osteoporosis. The highest significant SNP was $rs6938076^*$ of TREML2 (OR=0.63, CI: 0.45~0.89, recessive P=0.009). Consequently, the susceptible genes identified through the multi-omics analyses were confirmed to have association with osteoporosis. Therefore, multi-omics analysis might be a powerful tool to find new genes associated with a disease. We further identified that TREML2 has more associated with osteoporosis in females than did HTR1E.

The Antifungal Test: An Efficient Screening Tool for the Discovery of Microbial Metabolites with Respiratory Inhibitory Activity

  • Han, Jae Woo;Kim, Bomin;Oh, Mira;Choi, Jaehyuk;Choi, Gyung Ja;Kim, Hun
    • Mycobiology
    • /
    • 제48권4호
    • /
    • pp.326-329
    • /
    • 2020
  • Valuable natural compounds produced by a variety of microorganisms can be used as lead molecules for development of new agrochemicals. Furthermore, high-throughput in vitro screening systems with specific modes of action can increase the probability of discovery of new fungicides. In the current study, a rapid assay tested with various microbes was developed to determine the degree of respiratory inhibition of Saccharomyces cerevisiae in two different liquid media, YG (containing a fermentable carbon source) and NFYG (containing a non-fermentable carbon source). Based on this system, we screened 100 fungal isolates that were classified into basidiomycetes, to find microbial secondary metabolites that act as respiratory inhibitors. Consequently, of the 100 fungal species tested, the culture broth of an IUM04881 isolate inhibited growth of S. cerevisiae in NFYG medium, but not in YG medium. The result is comparable to that from treatment with kresoxim-methyl used as a control, suggesting that the culture broth of IUM04881 isolate might contain active compounds showing the inhibition activity for respiratory chain. Based on the assay developed in this study and spectroscopic analysis, we isolated and identified an antifungal compound (-)-oudemansin A from culture broth of IUM04881 that is identified as Oudemansiella venosolamellata. This is the first report that (-)-oudemansin A is identified from O. venosolamellata in Korea. Taken together, the development of this assay will accelerate efforts to find and identify natural respiratory inhibitors from various microbes.

DNA Chip using Single Stranded Large Circular DNA: Low Background and Stronger Signal Intensity

  • Park, Jong-Gu
    • 대한의생명과학회지
    • /
    • 제10권2호
    • /
    • pp.75-84
    • /
    • 2004
  • Massive identification of differentially expressed patterns has been used as a tool to detect genes that are involved in disease related process. We employed circular single stranded sense molecules as probe DNA for a DNA chip. The circular single stranded DNAs derived from 1,152 unigene cDNA clones were purified in a high throughput mode from the culture supernatant of bacterial transformants containing recombinant phagemids and arrayed onto silanized slide glasses. The DNA chip was examined for its utility in detection of differential expression profile by using cDNA hybridization. Hybridization of the single stranded probe DNA were performed with Cy3- or Cy5-labeled target cDNA preparations at $60^\circ$C. Dot scanning performed with the hybridized slide showed 29 up-regulated and 6 down-regulated genes in a cancerous liver tissue when compared to those of adjacent noncancerous liver tissue. These results indicate that the circular single stranded sense molecules can be employed as probe DNA of arrays in order to obtain a precious panel of differentially expressed genes.

  • PDF