• Title/Summary/Keyword: high-throughput system

Search Result 626, Processing Time 0.027 seconds

An Efficient Collision Resolution Method in Wireless Sensor Networks Based on IEEE 802.15.4 Slotted CSMA/CA (IEEE 802.15.4 Slotted CSMA/CA 기반 무선 센서 네트워크의 효율적인 충돌 해결 기법)

  • Jung, Kyoung-Hak;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.750-759
    • /
    • 2012
  • This paper addresses the collision resolution issue to enhance the performance of wireless sensor networks based on IEEE 802.15.4 slotted CSMA/CA. Some solutions in existing work try to solve this issue by adjusting Backoff Exponent (BE) value or Backoff Period (BP). In contrast to the existing solutions, the proposed scheme in this paper aims at providing high system throughput, but also achieving efficient energy consumption of sensor nodes by using Preamble Address (PA). For this, in the proposed scheme, only one sensor node begins data packet transmission by performing PA contention phase with other nodes before sending each data packet. Our simulation results show that the proposed scheme outperforms existing algorithms in terms of energy consumption and throughput.

An Adjustable Round Robin Scheduling Algorithm for the High Data Rate Mobile Communication System (고속 이동 통신을 위한 적응 가능한 라운드 로빈 스케줄링 방식)

  • Bae, Jeong-Min;Song, Young-Keum;Kim, Dong-Woo
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • Next-generation wireless networks are expected to support a wide range of services, including high-rate data applications, Various service types request differentiated QoSs(Qualities of Service) such as minimum data rate, accuracy, fairness and so on. Although resources of radio systems are limited, for many applications, it is important that certain QoS targets are required to be met. In this paper, we propose a QoS based scheduling algorithm for next generation systems, based on analyzing previous researches, and we develop the proposed QoS algorithm only for MIMO(multi-Input Multi-Output) systems. Moreover, we subsequently prove that the proposed algorithm optimize throughput relative to prespecified target values and converge to certain throughput.

Yeast as a Touchstone in Post-genomic Research: Strategies for Integrative Analysis in Functional Genomics

  • Castrillo, Juan I.;Oliver, Stephen G.
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.93-106
    • /
    • 2004
  • The new complexity arising from the genome sequencing projects requires new comprehensive post-genomic strategies: advanced studies in regulatory mechanisms, application of new high-throughput technologies at a genome-wide scale, at the different levels of cellular complexity (genome, transcriptome, proteome and metabolome), efficient analysis of the results, and application of new bioinformatic methods in an integrative or systems biology perspective. This can be accomplished in studies with model organisms under controlled conditions. In this review a perspective of the favourable characteristics of yeast as a touchstone model in post-genomic research is presented. The state-of-the art, latest advances in the field and bottlenecks, new strategies, new regulatory mechanisms, applications (patents) and high-throughput technologies, most of them being developed and validated in yeast, are presented. The optimal characteristics of yeast as a well-defined system for comprehensive studies under controlled conditions makes it a perfect model to be used in integrative, 'systems biology' studies to get new insights into the mechanisms of regulation (regulatory networks) responsible of specific phenotypes under particular environmental conditions, to be applied to more complex organisms (e.g. plants, human).

High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides

  • Ahn, Il-Pyung;Kim, Soon-Ok;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • Colletotrichum gloeosporioides forms an appressorium, a specialized infection structure, to infect its hosts. Among 400 and 600 culture filtrates from fungi and class Actinomycetes, six methanol extracts (A5005, A5314, A5387, A5560, A5597, and A5598) from the class Actinomycetes significantly inhibited appressorium formation in C. gloeosporioides infecting pepper fruits in a dose-dependent manner, while conidial germination was slightly enhanced. Two (A5005 and A5560) of them also exhibited distinctive inhibitory effect on the disease progress of pepper anthracnose. Water fractions of both culture filtrates also specifically inhibited appressorium formation in C. gloeosporioides and pepper anthracnose disease. Inhibition of appressorium formation by culture filtrate of A5005 was partially restored by the exogenous calcium. This results suggests that chemicals within A5005 extents its biological activity through disturbance of intracellular $Ca^{2+}$ regulation during prepenetration morphogenesis by C. gloeosporioides. Together, cell-based and target-oriented screening system used in this study should be applicable for other plant pathogenic fungi prerequisite appressorium formation to infect their hosts.

Multiple Electron Beam Lithography for High Throughput (생산성 향상을 위한 멀티빔 리소그라피)

  • Choi, Sang-Kook;Yi, Cheon-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.235-238
    • /
    • 2005
  • A Multiple electron beam lithography system with arrayed microcolumns has been developed for high throughput applications. The small size of the microcolumn opens the possibility for arrayed operation on a scale commensurate. The arrayed microcolumns based on of Single Column Module (SCM) concept has been fabricated and successfully demonstrated. Low energy microcolumn lithography has been operated in the energy range from 250 eV to 300 eV for the generation of nano patterns. Probe beam current at the sample was measured about >1 nA at a total beam current of $0.5\;{\mu}A$ and a working distance of $\~1\;mm$. The magnitude of probe beam current is strong enough for the low energy lithography. The thin layers of PMMA resist have been employed. The results of nano-patterning by low energy microcolumn lithography will be discussed.

Performance Evaluation of the HIPERLAN Type 2 Media Access Control Protocol (HIPERLAN 타입 2 매체접근제어 프로토콜의 성능평가)

  • Cho, Kwang-Oh;Park, Chan;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1B
    • /
    • pp.11-17
    • /
    • 2003
  • In this paper, we presented the dynamic random access channel allocation method under the priority based scheduling policy in order to improve the system performance of HIPERLAN/2 standardized by ETSI According to the scheduling policy, AP scheduler primarily allocates the resource to the collision MT This scheduling policy bring about decreasing the transmission delay of collision MT Dynamic RCH(random access channel) allocation method decreases the collision probability by increasing the number of RCH slots in case of low traffic. While it increases the maximum throughput by increasing the number of the data transmission slots in case of high traffic Therefore dynamic allocation method of RCH slots decreases the scheduling delay and increases the throughput When we evaluate the performance of presented method based on standards, we saw that the presented method improve the performance of the MAC protocol in terms of throughput and transmission delay.

Effective Distributed Supercomputing Resource Management for Large Scale Scientific Applications (대규모 과학응용을 위한 효율적인 분산 슈퍼컴퓨팅 자원관리 기술 연구)

  • Rho, Seungwoo;Kim, Jik-Soo;Kim, Sangwan;Kim, Seoyoung;Hwang, Soonwook
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.573-579
    • /
    • 2015
  • Nationwide supercomputing infrastructures in Korea consist of geographically distributed supercomputing clusters. We developed High-Throughput Computing as a Service(HTCaaS) based on these distributed national supecomputing clusters to facilitate the ease at which scientists can explore large-scale and complex scientific problems. In this paper, we present our mechanism for dynamically managing computing resources and show its effectiveness through a case study of a real scientific application called drug repositioning. Specifically, we show that the resource utilization, accuracy, reliability, and usability can be improved by applying our resource management mechanism. The mechanism is based on the concepts of waiting time and success rate in order to identify valid computing resources. The results show a reduction in the total job completion time and improvement of the overall system throughput.

Single Board Realtime 2-D IIR Filtering System (실시간 2차원 디지털 IIR 필터의 구현)

  • Jeong, Jae-Gil
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.39-47
    • /
    • 1997
  • This paper presents a single board digital signal processing system which can perform two-dimensional (2-D) digital infinite impulse response (IIR) filtering in realtime. We have developed an architecture to provide not only the necessary computational power but also a balance of the system input/output and computational requirements. The architecture achieves large system throughput by using highly parallel processing at both the system and processor levels. It reduces system data communication requirements significantly by taking advantage of a custom-designed processor and by providing each processor with its own input and ouput channel. After system initialization, almost 100 percent of the time is used for data processing. Data transfers occur concurrently with data processing. The functional level simulation reveals that the system throughput can reach as high as one pixel per system cycle. With only 10MHz clock frequency system, it can implement up to fourth order 2-D IIR filters for video-rate data ($512\times512$ pixels per frame at 30 frames per second). If we increase the system frequency, the system can be used for the preprocessing and postprocessing of video signal of HDTV.

  • PDF

Design and Analysis of a Dual Round-Robin based iSLIP (DiSLIP) Scheduling Scheme for IP Switching System (IP 스위칭 시스템을 위한 iSLIP 스케줄링에 기반의 Dual 라운드로빈 설계 및 분석)

  • Choi, Jin-Seek;Yang, Mi-Jung;Kim, Tae-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.41-50
    • /
    • 2007
  • In this paper, a new Dual Round-Robin (DRR) based iterative SLIP (iSLIP) scheduling scheme, called DiSLIP is proposed for IP switching systems. By using DRR followed by iSLIP, DiSLIP can exploit desynchronization effect of DRR and high performance of iSLIP, while the drawbacks of two schemes are minimized. 'Through computer simulation, we verify the switch throughput and total waiting time of the proposed scheme under nonuniform and correlated self-similar traffic. Moreover, the proposed scheme can considerably reduce the complexity of parallel matching logics compared to iSLIP. From the result, we observe that the proposed scheme outperforms DRR on throughput as well as iSLIP schemes on complextiy.

An Analysis on the Effect of Extended Frames to the End-to-end Performance (대형 프레임이 종단 간 전송 성능에 미치는 영향 분석)

  • Jo Jinyong;Kwak Jaiseung;Byeon Okhwan
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.787-798
    • /
    • 2004
  • High performance net재rking is one of key factors to provide support for data intensive applications in the Internet. Extended frame size has a major impact on end to-end performance with increasing effective TCP throughput and decreasing system overhead. Most of the research about extended frames has focused on local area network performance and the impact that extended frame size has on the system elements including memory, network interface card and so forth. In the paper, we analyse the effects of the extended frames to the other traffic flows sharing Internet paths for the wide area performance of TCP by conducting various network simulations. Results show that securing available bandwidth in no loss and low delay networks is indispensable to exploit the efficiency of extended frames.