• Title/Summary/Keyword: high-temperature tensile property

Search Result 139, Processing Time 0.031 seconds

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells (고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성)

  • Nguyen, Thi Xuan Hien;Mishra, Ananta Kumar;Choi, Ji-Sun;Kim, Nam-Hoon;Lee, Joong-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2012
  • Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Fracture Properties of Mo-Ni-Cu Austempered Ductile Iron Cast in Permanent Mold with Austempering Temperature and Time (금형주조한 Mo-Ni-Cu계 구상흑연주철의 오스템퍼링 온도 및 시간에 따른 파괴특성)

  • Yi, Young-Sang;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.331-337
    • /
    • 1991
  • Various test specimens were prepared by austempering low alloyed Mo-Ni-Cu ductile iron blocks of high graphite nodule count at 270, 320 or $370^{\circ}C$ for 0.5, 1, 3 or 9hrs. Tensile test, CVN impact test and plane-strain fracture toughness test(compact tension specimen of 50mm W) were done for each heat treatment condition at room temperature. X-ray diffractometer and optical microscope were used to investigate the change of microstructure and relationships between microstructure and test results. The highest retained austenite volume percent at each austempering temperature was corresponded to the highest mechanical property. The highest elongation value of 17%, U.T.S. value of 1,600 MPa or $K_{IC}$ value of 90MPa${\surd}$m were reached at each optimum condition. The best heat treatment condition for fracture toughness were 3hrs' holding time combined with the austempering temperature of 270 and $320^{\circ}C$, and 1hr's of $370^{\circ}C$.

  • PDF

Evaluation of Mechanical Property and Microstructure of Forged and T6-treated 6061 Aluminum Alloy Wheel (자동차 휠용 6061 Al합금의 단조 및 T6 열처리 전후의 미세조직과 기계적 특성 평가)

  • Lee, J.H.;Jeong, H.S.;Yeom, J.T.;Kim, J.H.;Park, N.K.;Lee, Y.T.;Lee, D.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.354-359
    • /
    • 2007
  • Effects of forging and mechanical properties of 6061 aluminum alloy wheel for automobiles were investigated in the present study. Microstructural and tensile characteristics of automobile wheel after hot forging process using dynamic screw press were analyzed to evaluate effect of metal flow on mechanical properties. The results showed advanced mechanical properties of 6061 alloy wheel because of $Mg_2Si$ precipitation by T6, elongated grain by forging, and work hardening by dense metal flow, etc. Hot compression tests were conducted in order to characterize high temperature compression deformation behaviors and microstructural variation in the range of $300{\sim}450^{\circ}C$, in the strain rate range of $10^{-3}{\sim}10^1\;sec^{-1}$. As strain rate increased, maximum compression stress increased but it was shown the reverse linear relation between temperature and maximum stress irrelevant to strain rate variation. On the other hand, temperature and yield stress didn't have any linear relation and its relation showed big deviation by a function of strain rate and test temperature.

A Forging Analysis and Mechanical Properties Evaluation of Superalloy Exhaust Valve Spindle (초내열 합금 배기 밸브 스핀들 단조 해석 및 기계적 특성 평가)

  • Choi, S.G.;Oh, J.S.;Jeong, H.S.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.84-88
    • /
    • 2009
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. The exhaust valves of low speed diesel engines are usually operated at temperature levels of 400-$600^{\circ}C$ and high pressure to enhance thermal efficiency and exposed to the corrosion atmosphere by the exhaust gas. Also, the exhaust valve is subjected to repeated thermal and mechanical loads. So, the nickel-based alloy Nimonic 80A was used for the large exhaust valve spindle. It is composed a 540mm diameter head and a 125mm diameter stem. It is developed large products by hot closed-die forging. Manufacturing process analysis of the large exhaust valve spindle was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to $1080^{\circ}C$ Numerical calculation was performed by DEFORM-2D, a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. Mechanical properties of the large exhaust valve spindle were evaluated by the variety of tests, including microstructure observation, tensile, as well as hardness and fatigue tests, were conducted to evaluate the mechanical properties for head part of exhaust valve spindle.

  • PDF

Microstructrue and Mechanical Properties of A3003 Aluminium Alloy Welds by Heat-treatment (열처리된 A3003 알루미늄합금 용접부의 미세조직 및 기계적 특성)

  • Lee, Il-Cheon;Song, Yeong-Jong;Gook, Jin-Seon;Yoon, Dong-Joo;Kim, Byung-Il
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.51-57
    • /
    • 2007
  • The present work was aimed to examine the variation of microstructure and mechanical properties by annealing($100{\sim}620^{\circ}C$, $2{\sim}8hr$) in A3003 Al alloy welded pipes. The A3003 Al alloy pipes with 34 mm in external diameter and 1.3 mm in thickness were manufactured by high frequency induction welding with the V shaped convergence angle $6.7^{\circ}$ and power input 50 kW. The tensile and yield strength decreased with increasing the annealing temperature remarkably, but elongation increased remarkably. Vickers hardness in welds decreased with increasing the annealing temperature remarkably. The primary intermetallic compound of $Al_{12}(Fe,\;Mn)_2Si$ was precipitated in welds as the same base metal. In a certain experimental condition, the welds line in A3003 alloys disappeared at $450^{\circ}C$ for 2 hr because of the same mechanical property and structure between welds and base metal.

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

Characteristic Evaluation Based on the Heat Treatment Conditions of Super Duplex Stainless Steel with 0.2% N as an Additive - Part 1: Mechanical Properties and Microstructure (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제1보: 기계적 특성 및 미세조직)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.46-50
    • /
    • 2008
  • Super duplex stainless steel has along life in severe environments because of its strength and corrosion resistance. If 0.2$\sim$0.3% Nitrogen in aninterstitial solid solution is added, the austenite structure is reinforced. This improves the solid solution hardening and the anticorrosionability. In this study, the mechanical properties and structures of the super duplex stainless steel with the 0.2% N additive were investigated to determine the effect of various volume fractions on the austenite phase. The various volume fractions and distributions of the austenite structure in the applied test specimens were obtained by changing the heat treatment temperature and cycle. The characteristics by amounts of the $\sigma$ phase obtained from the precipitation heat treatment were alsoinvestigated. From the results, when the austenite volume fraction increases, the tensile strength decreases and elongation increases. And the $\sigma$ phase was rapidly increased by increasing the heat treatment time. When the volume fraction of the $\sigma$ phase increased, tensile strength increased.

The Physicochemical Characteristics of PET Fabrics Treated with Low Temperature Glow Plasma and Atmospheric Corona Discharge (진공 저온 플라즈마와 대기압 코로나 방전가공 PET 직물의 물리화학적 특성)

  • Ma, Jaehyuk;Yang, Jinyoung;Koo, Kang;Yang, Hyun A;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • The high value-added functionality for synthetic fiber can be considered through a plasma enhanced treatment. In this study, PET(Polyethyleneterephthalate) was treated with a glow plasma and corona treatment. Surface characteristics of treated fabric were investigated using electron scanning microscopy(SEM), contact angle, X-ray photoelectron spectroscopy(XPS), tensile and adhesion strength. It was found that the contact angle showed $85.5^{\circ}$ for untreated fabric, $0^{\circ}$ for plasma and corona treatment at the condition of 200W for 7min. By XPS analysis, atomic ratio of O 1s/C 1s was increased from 0.27 to 0.43 by glow plasma and 0.27 to 0.41 by corona treatment at 200W for 7min, respectively. Glow plasma and corona treatment did not significantly change the tensile strength of PET fabric. Adhesion strength showed a substantial enhancement for the surface treated with the glow plasma, while corona treatment was adversely affected.

Influence of Mechanical Properties of Painting Layers and Priming Methods to Weathering Resistance of Danchung (도막의 기계적 성질과 포수방법이 단청의 내후성에 미치는 영향)

  • Oh, Joon suk;Kawanobe, Wataru
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.19-32
    • /
    • 2005
  • The exterior of Korean traditional wooden buildings have been painted with Danchung of painting method using glue and pigments. However because of losing traditional techniques and materials through the period of colonization and industrialization, many problems are occurring today. Especially after several years from painting, occurrence of scalings and flakings in painting layer is a serious problem. To improve weathering resistance of painting layer caused by stress from the difference of swelling and shrinkage between painting layer and wood plate, was examined by weathering tests. The stress is due to the hydrophilic property of wood, mechanical properties(tensile property and stress relaxation) of painting layer, and priming methods by various binders such as glue, acrylic emulsion(Primal AC-3444), acrylic resin(Paraloid B-72). Because stress relaxation of acrylic emulsion of which glasf transition temperature is below room temperature$(7^{\circ}C)$ is high, painting layers with acrylic emulsion generate no scalings and flakings and are in the most durable state in all weathering tests. Priming method which starts from low concentration to high concentration, is more effective to improve durability than other priming methods.

  • PDF