• 제목/요약/키워드: high-speed.high-precision machining system

검색결과 129건 처리시간 0.024초

평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구 (A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining)

  • 최성윤;권대규;박인수;왕덕현
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

고속 회전체의 능동 밸런싱에 관한 연구 (II): 제어 안정성과 응용 (A Study on the Active Balancing for High-Speed Rotors (II): Control Stability and Application)

  • 김종수;문종덕;이수훈
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.147-153
    • /
    • 2002
  • In the preceding research, the active balancing device, which is an electro-magnetic type, has been developed and active balancing method using influence coefficient method is also proposed. The stability of active balancing control is studied in this paper. A stable condition for active balancing control is derived by estimating errors of influence coefficients. A gain scheduling control using influence coefficients of the reference model is proposed when dynamic characteristic of rotor system is changed. The stability of the balancing method is verified by experiments.

Machining Center의 고속 ATC 제어 시스템의 개발 (Development of Control System of High-speed ATC of Machining Center)

  • 한동창;이동일;송용태;이석규
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.125-132
    • /
    • 2002
  • We use a compound-cam twin arm structure and random tool access method to achieve a faster ATC (Automatic Tool Changer) system for the accurate position and rotation control of a tool magazine and an exchange am. Based on the data obtained from various sensors, it is possible to follow the sequence of commands in each control step for an exchange arm. However, it is not so easy to reduce the exchange time of the system because of the slow responses of the sensors and execution mode delays of PLC (Programmable Logic Controller) scan time. In this paper, we propose a new programmed limit-switch position control method to obtain the shortest possible delays for the random tool access method and compound-cam twin arm structure. With some experimental results, we have achieved below 0.9sec tool exchange time with the proposed method.

슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어 (Cutting Force Regulation in Milling Process Using Sliding Mode Control)

  • 이상조;이용석;고정한
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석 (Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium)

  • 한정식;정종윤
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

축방향 하중을 받는 앵귤러 콘택트 볼베오링의 수명특성에 관한 실험적 연구

  • 황평;권성인
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제23회 학술대회
    • /
    • pp.53-59
    • /
    • 1996
  • The new trends in main spindle design of Machining Center are focused on high-speed, high-precision and high-stiffness. As a main spindle bearing, the angular-contact ball bearing is well used. A rolling bearing is usually only a small part of a larger mechanical system, but its performance can have a great influence on the functioning of the whole machine. This work is about fatigue life tester design and monitoring of defected rolling-element bearings. The major work is done via experiments and the vibration signal is analysised by means of frequency spectrum technique. By analyzing the frequency spectrum, it is possible to view the condition of the bearings.

  • PDF

고속 회전형 공구헤드의 설계 및 성능시험 (Design and Performance Test of High-speed Swivel Tool Head)

  • 김인환;구자함;허남수
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.57-63
    • /
    • 2014
  • At present, a high-speed swivel tool head of a small size is required to improve the productivity of CNC automatic lathes. Hence, there is growing interest in shorter machining times with higher cutting speeds. However, an increase in the rotation speed of a swivel tool head also has adverse effects, such as vibration and noise caused by the swivel tool head system. In this work, the fatigue life and contact pressure of a swivel tool head bearing system driven by gears were calculated. Based on the calculated results, a prototype swivel tool head was manufactured and its static and dynamic characteristics, i.e., the vibration, noise and precision, were measured using a reliability testing device which allows the application of cutting force to the end of the swivel tool head.

공작기계의 신뢰성 평가 시스템 (Reliability Evaluation System for Advanced Mother Machine)

  • 강재훈;이승우;송준엽;박화영;황주호;이현용;이찬홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.991-994
    • /
    • 2000
  • Recently, reliability engineering is regarded as the major field for aerospace and electronics, semiconductor related industry to improve safety and life cycle. And advanced manufacturing systems with high speed and intelligent have been developed for the betterment of machining ability In this case, reliability prediction has also important roll from design procedure to manufacturing and assembly process. Accordingly in this study, reliability evaluation system has been developed for prevention trouble. quality and life cycle improvement extremely for advanced mother machinary.

  • PDF

밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구 (Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling)

  • 김석관
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

공작기계 주축용 2단 치차 감속기 해석 (Analysis of 2 step gear reducer in machine tool spindle)

  • 장영도;장희락;여진욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 추계산학기술 심포지엄 및 학술대회 발표논문집
    • /
    • pp.99-103
    • /
    • 2001
  • Though the research and the development in the field of machine tool was focused on high precision and high speed machine these days, traditional gear reduction device has been used to increase the cutting force which was transmitted from power source, motor In this study, analysis of 2 step gear reducer used in machining center spindle was carried out by using APM WinMachine which is commercial software for the analysis of machine element and system. For the analysis of this device, first of all, the analysis of power source and the transmitting of it were carried out. Then, machine elements like gear, shaft, bearing, and the forth, was analyzed in the view point of life time, static strength, stiffness, fatigue failure, etc. Consequently, we can estimate them and introduce new idea of the design modification of reduction device by this study.