• Title/Summary/Keyword: high-speed railway system

Search Result 1,178, Processing Time 0.036 seconds

A Study on Application for Super Speed Maglev Railway of System Engineering Technology (시스템 엔지니어링 기법의 초고속 자기부상철도 적용에 관한 연구)

  • Han, Young-Jae;Jo, Jung-Min;Lee, Jin-Ho;Kim, Dong-Hyun;Lee, Chul-Ung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • A super speed maglev is a complicated system integrating electric, electronic, mechanic, civil and construction engineering. So, there must be an integrative system to monitor and manage operation requirements and standard features of each subsystem and the interfaces between each technology. As an indispensable part that can ensure whole system performance, a secure interface for each individual subsystem is an important management item of system engineering. By securing the interface performance of each individual subsystem, system failure can be effectively prevented in advance. Based on system engineering techniques, improvement of security and reliability for a super speed maglev is described in this research.

Characteristics and Fault Analysis of Electric Devices for High-Speed Railway using Control Signal (제어 신호를 이용한 고속철도 전장품의 특성 및 고장 분석)

  • Han, Young-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1128-1133
    • /
    • 2006
  • The most important thing to secure safety and reliability of railway vehicles is to verify performance characteristics of equipments, and related companies or research institutes had many efforts to verify performances and functions of equipments synthetically and efficiently. KHST(Korean High Speed Train) has been developed by KRRI (Korea Railroad Research Institute). An electric railway system is composed of high-tech subsystems, among which main electric equipment such as transformers and converter are critical components determining the performance of rolling stock. We developed a measurement system for on-line test and evaluation of performances of KHST. The measurement system is composed of software part and hardware part. Perfect interface between multi-users is possible. A new method to measure temperature was applied to the ]measurement system. By using the system, fault diagnosis and performance evaluation of electric equipment in Korean High Speed Train was conducted during test running.

Semi-Active Vibration Control for HSR 350x (한국형고속열차 세미액티브 진동 제어)

  • Kim, Sang-Soo;Kim, Young-Kuk;Kim, Ki-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.169-173
    • /
    • 2007
  • To improve the riding comfort and to increase the speed of high-speed railway, it needs active suspension system for railway more and more. In Korea, Korean Train Express (KTX) was opened to commercial traffic 3years ago. Korea High-speed Railway (HSR 350x) was developed and succeeded 350km/h test run by Korean government and several related institute. With the increase of the speed, the vibration control of the high-speed railway becomes important to improve high ride quality. To meet this request, the authors suggest the installation of lateral semi-active damper to the power car of HSR 350x. The result shows better performance.

  • PDF

Development of the technology to verify the systems interface for the High speed Electric Multiple Unit (차세대고속철도기술개발사업 시스템인터페이스 시험기술 개발)

  • Kang, B.M.;Jeong, S.G.;Ahn, H.K.;Choi, H.C.;Yu, S.W.
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.810-815
    • /
    • 2010
  • Since a long time ago, many railway engineers analyze and discuss the interface between the sub-system of railway, such as a wheel/rail interface, pantograph/catenary interface etc. The verifying of the system interface could help to achive the optimized performance and safety of the railway system considering that the railway system is constructed by various engineerings, such as civil, mechanical, electrical, etc. A rolling stock with distributed drive system, which will be developed by HEMU-400x project, is capable of running on high speed line and conventional line in Korea. To verify the performance of rolling stock, test run will be done with revenue service line. And the test items of the system interface have to be selected to verify a functional compatibility and physical force between rolling stock and infrastructure. In this paper, the authors will indicates the test items to verify system interface. To achive the conclusion, the authors analyze a specification of the development train and the design value of Seoul-Busan high speed line, which will be used for testing of the development train, and also, study the various case of high speed train commissioning.

  • PDF

Development of Train System Engineering Technology and Exterior and Interior Design of Prototype Test Train in G7 Project for High Speed Railway Technology (G7 고속전철 기술개발사업에서의 차량시스템 엔지니어링기술 및 시제차량 디자인 개발)

  • Chung Kyung-Ryul;Lee Kyung-Teak;Lee Byeong-Jong;Yoon Se-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.533-541
    • /
    • 2003
  • This paper shows the results of train system engineering technology and exterior and interior design of a prototype test train(HSR 350X) which was developed in R&D project titled 'Development of High Speed Railway Technology'. The prototype test train, which has two power cars, two motorized trailers and three trailers, is now being tested on high speed line.

  • PDF

Development of Thermal Monitoring System for Inspection of Railway Components (철도차량 하부부품 열화상 모니터링 시스템 개발)

  • Seo, Jung-Won;Kwon, Seok Jin;Kim, Hyeong-Jin;Lee, Chan-Woo;Kim, Min-Su;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.687-693
    • /
    • 2013
  • The service conditions of railway cars have become more difficult in recent years due to increased speed. Faulty components in the railcars may result in service interruption, or in extreme cases, derailment. Thus, it is important to diagnose and monitor the main components of railcars. Temperature monitoring is one of the basic methods used to diagnose abnormal conditions in the main components of railway cars, such as in bearings, reduction gears, and traction motors. In this study, we developed a monitoring system for the main components, using an infrared thermography technique. This technique has the advantage of infrared thermal camera imaging of temperature contours in the components. Various hardware and software components of the monitoring system are used to acquire the sensor data, to identify potential problems in railcar operation.

User-centric Scalability Measurement System of Large-Scale Measurement Data for 400km/h High-Speed Railway (400km/h 고속철도 대규모 계측데이터 사용자 중심 확장성 계측시스템)

  • Hwang, Kyung-Hun;Park, Sun-Kyu;Song, Byung-Keun;Yang, OK-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1157-1163
    • /
    • 2014
  • Needs for a new technologies of infrastructure systems arose, following the development of next generation EMU(Electric Multiple Unit) train with maximum speed over 400km/h. For high-speed operation tests of the new EMU, a high-speed railway infrastructure test-bed was constructed in a 28km long section of the Honam High-speed Railway. Diverse sensors and monitoring system was installed for continuous monitoring of the railway. Due to such effort, further demands and needs of the integrated monitoring system was derived in a more comprehensive and long-term perspective.

Speed control of an IPMSM using multilevel inverters based on next generation high speed railway system (멀티레벨 인버터를 적용한 차세대 고속전철 구동용 IPMSM의 속도 제어)

  • Kwon, Soon-Hwan;Jin, Kang-Hwan;Park, Dong-Kyu;Li, Wei;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1473-1479
    • /
    • 2011
  • In this paper, speed control of IPMSM drives for the next generation domestic high speed railway system using multilevel inverter is presented. Multilevel inverter is suitable for the high-voltage high-capacity motor drive system because noise and switching frequency of power semiconductor devices is reduced. For the speed control of IPMSM using multilevel inverter, maximum torque control is applied in a constant torque region, and field weakening control is applied in a constant power region. Simulation programs based on Matlab/Simulink are developed. Finally the designed system is verified by simulation and their characteristics are analyzed by the simulation results.

  • PDF

Development of Multi-Train Traffic Simulator considering High-Speed Line (고속선을 고려한 다중열차주행 시뮬레이터 개발)

  • 김동희;김영훈
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.58-65
    • /
    • 2001
  • Many changes in the railway environment has directly affected to the railway company. To cope immediately with the influence of environment and to promote productivity, the railway company has to introduce an efficient train operation system and related core technologies. The railway system is composed or large-scale infrastructures ann high-cost trains. Simulation method is one or core technologies and also is efficient tool for planning and analyzing this kind of complex system. The purpose of this research is to develop multi-train traffic simulator considering high-speed train for GyongBu-Line. To achieve this objective, the elements of railway system was analyzed, and as a result, a data structure modeling for the railway system such as rail-Tine infrastructure, rain, timetable and operational route is presented. The developed simulator is composed of three major part : input-module, main-module, and output module. The concept and brief explanation of each module will be treated.

  • PDF

Dynamic behavior analysis of the high speed EMC(Electric Multiple Unit) (동력분산형 고속철도의 주행성능 해석기술 연구)

  • Yoon, Ji-Won;Park, Tae-Won;Lee, Moon-Gu;Jun, Kab-Jin;Park, Sung-Moon;Kim, Jung-Bum
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1160-1165
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In this paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper models including air-suspension system, wheel-rail, bogie and car-body will be developed according to the vehicle simulation scenario. International safety standard will be applied for final verification of the system. This research can propose a better solution when test running shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF