• Title/Summary/Keyword: high-speed railway system

Search Result 1,178, Processing Time 0.029 seconds

Performance Assessment of High-Speed Transponder System for Rail Transport on High-Speed Line (철도교통용 고속 트랜스폰더시스템 고속선 실차 성능평가)

  • Park, Sungsoo;Lee, Jae-Ho;Kim, Seong Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.304-313
    • /
    • 2016
  • It is necessary to receive telegrams transmitted by transponder tags installed along the track in order to detect the exact position of a high-speed train. In a high-speed railway environment, telegrams can be corrupted by the electromagnetic interference that comes from onboard electric train power equipment or wayside devices. In this study, we verified the railway environment compatibility of a high-speed transponder system developed as a train position detection system. We installed transponder tags on the Honam high-speed line and measured the number of error-free telegrams received from the transponder tag while the HEMU-430X was running at 268km/h~334km/h. Based on the measurement, we estimated the length of the contact zone formed between the transponder reader and tag. Field test results allow us to estimate how many error-free telegrams can be received when HEMU-430X is at speeds up to 400km/h.

Integrated Railway Signaling Systems for Laboratory Testing of Next-generation High-speed Train (한국형 고속전철용 신호시스템의 실험실 시험을 위한 통합 신호시스템)

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Park, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Railway signaling systems consist of several vital computerized equipment such as CTC(Centralized Traffic Control), EIS(Electronic Interlocking System), ATC(Automatic Train Control) and so on. Currently, the project for development of railway signaling systems for the next-generation high-speed train is progressed according to the G7 project and railway signaling related several companies and research institute are joined this project consortium. The railway signaling systems, being developed in this project, called as a kTCS(Korean Train Control System), is composed of kTCS-CTC, kTCS-IXL, kTCS-ATC and etc. kTCS signaling systems have to be operated at the laboratory testing level as integrated signaling systems by interface between each railway signaling systems before railway field installation and revenue service. To solve this matter, communication protocols between each signaling equipment are designed and message codes for each defined protocols have defined. And also several equipment has developed for the railway integrated signaling systems for laboratory testing. We has plentifully tested and verified the designed protocols and the characteristics of integrated railway signaling systems with our developed each kTCS signaling equipment and communication protocols. In this paper, the integrated kTCS system including communication protocols is presented.

3-D Information Model for High-speed Railway Infrastructures (고속철도시설물을 위한 3차원정보모델)

  • Shim, Chang-Su;Kim, Deok-Won;Youn, Nu-Ri
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-246
    • /
    • 2008
  • Design of a high-speed railway line requires collaboration of heterogeneous application systems and of engineers with different background. Object-based 3D models with metadata can be a shared information model for the effective collaborative design. In this paper, railway infrastructure information model is proposed to enable integrated and inter-operable works throughout the life-cycle of the railway infrastructures, from planning to maintenance. In order to develop the model, object-based 3-D models were built for a 10km railway among Korea high-speed railway lines. The model has basically three information layers for designers, contractors and an owner, respectively. Prestressed concrete box-girders are the most common superstructure of bridges. The design information layer has metadata on requirements, design codes, geometry, analysis and so on. The construction layer has data on drawings, real data for material and products, schedules and so on. The maintenance layer for the owner has the final geometry, material data, products and their suppliers and so on. These information has its own data architecture which is derived from similar concept of product breakdown structure(PBS) and work breakdown structure(WBS). The constructed RIIM for the infrastructures of the high-speed railway was successfully applied to various areas such as design check, structural analysis, automated estimation, construction simulation, virtual viewing, and digital mock-up. The integrated information model can realize virtual construction system for railway lines and dramatically increase the productivity of the whole engineering process.

  • PDF

Measurement and Analysis of Current Collection Signals in Korean High-speed Railway

  • Kim, Jung-Soo
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.1-5
    • /
    • 2006
  • A data acquisition and processing system for measuring the current collection signals of the Korean High-speed Railway is developed. The current collection system is composed of a pantograph and the overhead catenary that supplies electrical power to the train through the pantograph. The system simultaneously measures the signals generated at the interface between the catenary and the pantograph through the accelerometers, load cells and strain gauges placed at various locations. The on-track test data are processed to evaluate the current collection reliability. The fiequency analysis of the signals reveals the presence of several structural vibration modes in the pantograph, as well as the components arising from the periodicity in the structure of the catenary and pantograph at the interface. The feasibility of predicting the contact performance from the measured signals is also demonstrated.

Development of Position Detection System using GPS (GPS를 이용한 위치검지시스템 개발)

  • Han, Young-Jae;Mok, Jin-Yong;Kim, Ki-Hwan;Kim, Seog-Won;Eun, Jong-Phil
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1729-1734
    • /
    • 2007
  • Recently, as the feasibility study shows that trans-Korea railway and trans-continental railway are advantageous, interest in high-speed railway system is increasing. Because railway vehicle is environment-friendly and safe compared with airplane and ship, its market-sharing increases gradually. We developed a measurement system for on-line test and evaluation of performances of KHST. The measurement system is composed of software part and hardware part. Perfect interface between multi-users is possible. Nowadays, position data inputs to pulse signal from wheel. Perfect position measurement was limited to slip and slide of vehicle. This measurement makes up for the weak points, Position Detection System using GPS develops. By using the system, Korean High Speed Train is capable of accurate fault position detection.

  • PDF

A Study on System Stability Improvement of Power System with High Speed Electric Railway Using STATCOM (STATCOM을 이용한 고속전철 부하가 연계된 계통의 안정도 향상에 관한 연구)

  • 이준경;오재경;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.11
    • /
    • pp.625-631
    • /
    • 2003
  • The purpose of this paper is to assess experimentally system stability of the 154 ㎸ transmission system due to the current of the forthcoming AC High-Speed Railway (HSR) era. It introduces a simple method to evaluate the system stability The proposed method also shows the relationship between stability and power losses, and the stability indices made by the numerical process proposed in this paper will be used to assess whether a system can be stabilized or not. This paper also presents the improvement of the stability via loss reduction using STATCOM. Reactive power compensation is often the most effective way to improve both power transfer capability and system stability. The suitable modeling of the electric railway system should be applicable to the PSS/E. In the case study the proposed method is tested on a practical system of the Korea Electric Power Corporation (KEPCO) which will be expected to accommodate the heavy HSR load. Furthermore, it prove that the compensation of voltage drop and its by-product, loss reduction is closely related to improvement of system stability.

Train Performance Simulation for Korea High Speed Train (한국형 고속전철 개발차량 열차성능 해석)

  • 이태형;박춘수;목진용
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.199-203
    • /
    • 2003
  • Computer aided simulation is becoming an essential part in planning, design, and operation of railway systems. To determine the adequate performance and specification of railway system, it is necessary to calculate rotting stock's performance such as distance, speed, power etc when train's running. This paper presents result of train performance simulation using the program that developed in advance for Korea high speed train. To verify result of simulation, we have compared that with experiment data.

  • PDF

Development of seismic fragility curves for high-speed railway system using earthquake case histories

  • Yang, Seunghoon;Kwak, Dongyoup;Kishida, Tadahiro
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • Investigating damage potential of the railway infrastructure requires either large amount of case histories or in-depth numerical analyses, or both for which large amounts of effort and time are necessary to accomplish thoroughly. Rather than performing comprehensive studies for each damage case, in this study we collect and analyze a case history of the high-speed railway system damaged by the 2004 M6.6 Niigata Chuetsu earthquake for the development of the seismic fragility curve. The development processes are: 1) slice the railway system as 200 m segments and assigned damage levels and intensity measures (IMs) to each segment; 2) calculate probability of damage for a given IM; 3) estimate fragility curves using the maximum likelihood estimation regression method. Among IMs considered for fragility curves, spectral acceleration at 3 second period has the most prediction power for the probability of damage occurrence. Also, viaduct-type structure provides less scattered probability data points resulting in the best-fitted fragility curve, but for the tunnel-type structure data are poorly scattered for which fragility curve fitted is not meaningful. For validation purpose fragility curves developed are applied to the 2016 M7.0 Kumamoto earthquake case history by which another high-speed railway system was damaged. The number of actual damaged segments by the 2016 event is 25, and the number of equivalent damaged segments predicted using fragility curve is 22.21. Both numbers are very similar indicating that the developed fragility curve fits well to the Kumamoto region. Comparing with railway fragility curves from HAZUS, we found that HAZUS fragility curves are more conservative.

Development for Systems Engineering Framework Model of Next Generation High Speed Railway Train (차세대 고속전철 시스템 엔지니어링 체계 모델 개발)

  • 유일상;박영원
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.147-154
    • /
    • 2001
  • A high-speed rail system represents a typical example of large-scale multi-disciplinary systems, consisting of subsystems such as train, electrical hardware, electronics, control, information, communication, civil technology etc. The Systems Engineering, as a methodology for engineering and management of today's ever-growing complex system, must be applied to development of such systems. This paper presents systems engineering framework model to have to be applied to the systems engineering technology development task for the korean next-generation high-speed railway systems in progress and demonstrates data models and schema for computer-aided systems engineering software, RDD-100, for use in its development and management.

  • PDF

Torque Measurement of Tripod Shaft for HSR-350x (한국형고속열차의 동력전달축 부하측정)

  • Kim, Sang-Soo;Kim, Young-Guk;Kim, Ki-Hwan;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.660-664
    • /
    • 2007
  • Korea High-speed Railway (HSR-350x) was developed by Korean government, several institutes, and related companies. HSR-350x was investigated its performance and tested at the high speed line. In 2004 December, HSR-350x was run over 350km/h and proved its running performance. And Korean Train Express (KTX) served the commercial traffic for 4 years. These high speed railways have 12 motors to transfer the traction effort or the braking force. To obtain the load of the transfer shaft, it is necessary to measure the transferred torque of the shaft. In this paper, authors propose the construction the measurement system fur monitoring the force transferred to the train from the motor The system was installed to the tripod shaft which is located between the reduction gears and it measures the mechanical load directly.